
80 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.07

 Adaptive UIX Layer for University Information SOA-BUS

Octavian DOSPINESCU, Cătălin STRÎMBEI, Roxana-Marina STRAINU,

Alexandra NISTOR

Faculty of Economics and Business Administration, AL.I.Cuza University, Iasi

doctav@uaic.ro, linus@uaic.ro, roxana.strainu@gmail.com,

alexandra.anichitoaei@yahoo.com

The user interface (UI) layer is considered one of the key components of software applications

since it connects their end-users to functionalities. Well-engineered and robust software

applications could eventually fail to be adopted due to a weak UI layer. In the current market,

when creating sites, UI designers have to determine how to plan the best interface according

to the devices of the users, namely desktops, laptops, tablets or smartphones. Having this in

mind, the current paper aims to present the adaptive UIX Layer for a University Information

SOA-Bus (UISB) – a topic discussed in previous works [1], [2]. In this respect, we reviewed

the literature on responsive and adaptive web design in order to identify the best front-end

approach to the UISB. According to our findings, there is a strong debate in the academic field

as well in the IT business in what concerns UI design. Recent interests have shown that the new

trend in drafting the front-end layer is choosing between a responsive and an adaptive design.

While arguments provided by both sides have failed to ease the decision makers’ choices on

what type of design to choose, we aim to bring some light on the subject by proposing different

layers for the UISB.
Keywords: SOA, User Interface, Responsive, Adaptive

Introduction

The development of User Interfaces (UI)

has been a topic of interest both for academia

and industry since the early 1980s. During the

time a constant evolution has occurred in the

field and such an evolution has been coupled

with a continuous effort to develop new

methods and strategies to create UIs in

effective and efficient ways [3].

UIX (User Interface XML) is a set of

technologies that constitute a framework for

building web applications. The main focus of

UIX is the user presentation layer of an

application, with additional functionality for

managing events and the state of the

application flow. UIX is designed to create

applications with page-based navigation, such

as an online human resources application,

rather than full-featured applications requiring

advanced interaction, such as an integrated

development environment (IDE) [4].

An application can interact with UIX in

predefined places called decision points,

where a decision is made by the operator or a

certain action routine is automatically

triggered. Execution of an action terminates in

a new decision point. The application's

structure is provided to UIX in configuration

files, which can be ASCII files, databases, or

resource files. UIX includes Java class

libraries, APIs, XML languages, and other

technologies for developing different aspects

of web-based applications [5].

2 Responsive Web Design (RWD)

Nowadays, responsive design has become a

major trend in web development due to the

high diversity of devices used for web

browsing. According to [6] applying

responsive design to existing web sites

implies major reengineering due to the

underlying fluid grid process. Likewise,

responsive design is limited to desktop-to-

mobile adaptation.

The expression ‘responsive web design’ has

earned popularity in 2010 when the web

designer and developer Ethan Marcotte wrote

an article on the subject [7]. The same author

considers that the goal of RWD consists in

making a web page look equally good no

matter the screen size of a device. Before the

introduction of responsive web design, web

1

mailto:doctav@uaic.ro
mailto:linus@uaic.ro
mailto:roxana.strainu@gmail.com

Informatica Economică vol. 21, no. 2/2017 81

DOI: 10.12948/issn14531305/21.2.2017.07

designers and developers created most

websites by following the principles of pixel-

perfect web design. Pixel-perfect web design

treats a web page like a page from a magazine.

In this approach, the mock-up of a web page

is first created in Photoshop, and then a

developer recreates that design to fit a web

browser. The goal of pixel-perfect web design

is to make a web page resemble the original

mock-up as much as possible. But a web page

is not printed on a piece of paper but viewed

in a web browser. Unlike paper, a web

browser is a dynamic medium. It allows a user

to re-size the browser window itself, and users

can also change the size of the font as well.

And when this happens, web pages created

with pixel-perfect web design principles often

break. If a web page was optimized for a 1024

× 768 pixel screen size, for example, that web

page will look quite wrong in a smaller or

bigger screen [8].

As the number of mobile devices that have a

variety of screen sizes grows, pixel-perfect

web design has become problematic.

Responsive web design is an attempt to solve

this problem with the following three tools

[9]:

 a flexible, grid-based layout;

 flexible images;

 media queries.

Flexible grids are created by using percentage

(a relative unit) instead of pixel (an absolute

unit). Media queries make it possible to apply

different cascading style sheets (CSS)

depending on the media type and the

maximum width of the device screen. With

cascading style sheets, one can control images

and other fixed-width elements so that they

stay contained in their container blocks.

Responsive web design makes a web page

adjust itself in response to the screen size of a

device. This means that there is no longer one

fixed layout in which the elements of a web

page are permanently placed. Instead, as the

size of the screen changes, the layout of a web

page adjusts itself and rearranges the elements

of the page.

According to [10] and [11], responsive web

design is used by many digital agencies due to

its specific advantages, namely:

 The content stays the same – having this

in mind, using RWD reduces the need to

change or ‘adapt’ the interface website for

different versions. Moreover, the Content

Management System (CMS) remains

unmodified, the need to duplicate content

entry according to different screen types

being eliminated.

 It can be easily achieved automatically

– in order to determine the width of the

browser or device there can be used CSS

(cascading style sheets), media queries or

HTML5, the existing content being

adjusted or stacked to fit automatically the

space available [11].

 Cost – in comparison with the Adaptable

Web Design the Responsive one is

cheaper and less time consuming.

Although the advantages shown make of

RWD an attractive choice when designing

interfaces, the same author recalls some

limitations as:

 Generic not optimized experience –

when accessing a site with RWD

interface, the user does not benefit of a

fully optimized experience in accordance

with the device they are using.

 No accounting for users’ behavioral

differences with different mediums. The

evidence indicates that users behave very

differently when using smartphones and

desktops, so ideally a mobile website

should be adapted to these behavioral

changes [11].

 Loading time issues. Websites with lots

of HTML code and multimedia take far

longer to load on a mobile device with a

3G connection and a smaller CPU than on

a desktop with broadband. As the content

doesn’t change between environments,

with responsive websites, mobile users are

kept waiting [11].

A responsive design can have multiple

breakpoints, say for a small-screen phone,

then a large-screen phone, then a tablet, then a

laptop/desktop. Many teams try to decide on

breakpoints using average screen sizes.

However, it’s better to look at what the

content and navigation wants to be. By letting

the content and navigation drive the

82 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.07

breakpoints, teams find they can often get

away with fewer screen configurations. For

example, a high-resolution Retina iPad might

easily share the same configuration as a well-

constructed laptop display, while lower

resolution tablets might just need a little

adjustment to that same configuration.

3 Adaptive User Interfaces

Adaptive User Interfaces (AUI) are particular

context-aware systems that aim at generating

user interfaces relevant to the user’s profile,

task and environment [12]. The AUI research

domain comes from the crossover of the

personalization domain (which consists in

allowing the user to manually customize the

interface) and the context-awareness. Hence,

AUI focus on providing a user interface well

suited to the user and its task with as less as

possible user intervention. The main

challenge for AUI is to design their

mechanisms so that the usability is preserved

[8].

Unlike standard context-aware systems, AUI

promote a re-organization or a re-distribution

of a user interface where context-aware

systems associate a unique interface per

service. On the detection of a new context,

AUI may re-arrange the graphical

components (and their properties such as the

size), the available modalities or the type of

visualization to better suit the new context.

The quality of AUI depends on the relevancy

of the adaptation considering the task and on

the intrusiveness of the adaptation. An AUI

that adapt too many times without the user’s

approbation may have a negative impact on

the task.

AUI represent a complex problem addressed

by particular approaches. A notable one is the

“plasticity” approach which originally aimed

at resolving interface adaptation problems

considering an adaptation to the device

(computing context) and to the physical

environment (physical context) [13].

Plasticity employs a Model-Driven

Engineering (MDE) tactic to design interface

having multiple representations (one for each

targeted context) and distributed interfaces

(interfaces capable to display on several

devices) [13]. Plasticity design suggests that

the contexts are known at design time. The

concept evolved to consider the user’s context

and more recent researches on plasticity

introduced the consideration of time context

by using learning systems to depict users’

preferences and habits [14]. Plasticity focuses

on modelling multi-target interfaces,

distributed interfaces, physical environment,

hardware and software capabilities and tasks.

The mechanism of adaptation is commonly

dealt through Service Oriented Architecture

[12] or component based approach.

Another approach to context-aware interfaces

is the USer Interface eXtensible Markup

Language (UsiXML) (Limbourg, 2005).

UsiXML is a user interface description

language that aims at modeling relevant

aspects of the interfaces to support context-

aware application. For this purpose, UsiXML

introduced the “μ7” concept which consists in

the design of “multi-device, multi-platform,

multi-user, multi-linguality / culturality,

multi-organization, multi-context and multi-

modality” enabled interfaces. UsiXML

models are partly based on the works on

plasticity and propose models to enable the

adaptation of the interfaces to the user’s

context.

The commonly adopted alternative to RWD is

AWD – Adaptive Web Design. According to

[11], experts such as Jakob Nielsen have

argued that AWD offers a preferable solution.

The advantages are:

 Speed;

 Sensory design;

 Native app portability.

But AWD also has the following limitations:

 The content nightmare;

 Too many versions;

 Native app ‘transformation’.

4 Combining RWD with AWD

The best solution is often achieved by

combining RWD with AWD, in order to enjoy

the cost and time efficiencies of RWD while

offering the better user mobile experience that

AWD offers in prioritized content areas.

Informatica Economică vol. 21, no. 2/2017 83

DOI: 10.12948/issn14531305/21.2.2017.07

Table 1 summarizes the twelve principles that

define AWD and RWD, comparing each

method of use and implementation.

Table 1. Key principles in AWD and RWD [15]

Principles Adaptive Web Design (AWD) Responsive Web Design

(RWD)

Access Speed Very fast Fast

App Store Available Not necessary

Approval Process Some are mandatory None

Content Versions Multiple URLs/versions for each

page, i.e., content forking

Same content regardless of

device or platform

Development Cost Expensive to very expensive Moderate to reasonable

Features Phone features, location services,

camera, etc...

Limited phone features

Functionality Some functions may be omitted

from the mobile application

All functions of original site

remain

Internet Connection Available offline Required

Monetization Easily monetized Not as easy to monetize

Navigation Interactive user interface Static but responsive user

interface

Optimized to mobile

device

Best Good

User Access After installation and some user

configuration/interaction

Through browser with little to no

user configuration/interaction

According to [11], using RWD as the basis,

there can be included some elements of AWD,

changing some assets, content, or interfaces

depending on whether the site is visited from

a smartphone, tablet, or desktop—thus

making a responsive website appear

‘adaptive’. Similarly, in the AWD approach

there can be embraced the RWD’s

responsiveness so the content and interfaces

degrade gracefully on different size screens

(RWD) until the ‘break point’ where a

different version is applied (AWD).

This route poses two challenges: The

interaction design/information architecture

needs to be designed for both the desktop and

mobile at the same time while considering the

resizing, spatial distribution, and animation (if

required) of elements on desktops, tablets, and

mobile screens. Once this juncture has been

crossed, the developers need to rely on all

available technologies (media queries,

browser sniffing, feature detection, and

network speed analysis) to detect the

multitude of resolutions and device

capabilities while tailoring the end user

experience to each particular device. This

approach is bleeding edge and quite

experimental.

As we can see from Table 1, each of the two

design practices have different advantages

and limitations. While the responsive design

is client-side, meaning the whole page is

delivered to the device browser (the client),

and the browser then changes how the page

appears in relation to the dimensions of the

browser window, the adaptive design is

server-side, meaning before the page is even

delivered, the server (where the site is hosted)

detects the attributes of the device, and loads

a version of the site that is optimized for its

dimensions and native features. Considering

the pros and cons we propose further a front-

end solution for the University Information

SOA-Bus based on the AWD approach.

84 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.07

5 Adaptive user interface model for

University Information SOA-Bus (UISB)

As suggested by [16], a typical approach when

developing adaptive interfaces consists in

using a set of models to generate and further

refine a user interface artefact until the final

user interface is adapted to best match the

user’s need, given the constraints set by the

context in which the user operates. In order to

design the UI of the UISB we took into

consideration the Cameleon reference

framework [17] which comprises four

different abstraction layers for adaptive

interfaces (Figure 1).

Fig. 1. Models and artifacts in the adaption process [4].

As shown in Figure 1, the interface adaption

process uses four models, namely: task model,

concept model, context model and user

interface model. Further we present a short

description for each of them.

Task model – when solving problems, the

human being has the habit of decomposing it

in several subproblems. In this regard, the

most used structure for task models is the

hierarchical one. In what concerns the UISB,

we used the ConcurTaskTrees (CTC)

proposed by [18] which contains four types of

tasks:

 System tasks, which are completed by the

system alone;

 User tasks, which are only allocated to a

user;

 Interaction tasks, which take place when

the user relates to the system;

 Abstract tasks.

Each of the four tasks can be further divided

in subtasks, the connection between them

being ensured by temporal operators. Using

this notation, we can model the interactions

and deal with the unexpected events which

can occur in the University Information SOA-

Bus system (UISB). For example, if a

professor, who is currently publishing a

document on the Portal is required to evaluate

a paper on the Blackboard, he will suspend the

current activity and will solve the most urgent

task suggested, the Blackboard evaluation.

Concepts model – according to [19], the

concept model details the objects with which

the user interacts through tasks. In the

proposed UISB system we will use specific

university concepts (e.g. admission, grades,

evaluation, timetable, library).

Context model – stores relevant information

collected and/or managed by the system [16].

In the UISB, the context model comprises the

environment (which incorporates information

regarding the environment in which the

process executes), users (which holds

information about the user’s interest, goals

and characteristics), and devices (in which are

described the physical devices and software

Context Model

Task Model

Concepts Model

User Interface

Model

Task/Activity

Abstract User

Interface

Concrete User

Interface

Final User

Interface

Environment

Users

Devices

Informatica Economică vol. 21, no. 2/2017 85

DOI: 10.12948/issn14531305/21.2.2017.07

features of the platform the framework is

running on).

Fig. 2. Phases in the adaption process [17]

User interface model – referred as the Final

User Interface, is rendered by the UI toolkit of

the given platform. In order to create an

adaptive user interface for the UISB system,

several UI versions will be developed in the

design phase, while, at run-time, the proper

changes will be made according to the

adjustment required (see Figure 2).

Depending on the devices, desktop/mobile,

the UI architecture differs in terms of

structure. Further, we make a practical

implementation of a web architecture for the

proposed UISB.

The final goal is to obtain an adaptive user

interface starting from the following class

diagram.

Task-Oriented

Specification

Abstract User

Interface

Concrete User

Interface

Final User

Interface

Current run-time

configuration

New run-time

configuration

Reconfiguration

Domain

Concepts

Tasks

Context of use

User

Platform

Environment

Adaptation

Evolution

Transition

1. Design phase:
Developing different UI

versions

Models used both in the

design and run-time phase

2. Run-time phase:

UI adjustment according

to changes

86 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.07

Fig. 3. The class diagram for the proposed system

The diagram contains the classes related to the

education process, including information

about students, classes, grades, track record,

semesters and the associations between all

these entities.

In order to implement the conceptual model,

we used the .NET framework and its

capabilities: entity framework model and

model-view-controller technology. In the

following sequences we present some pieces

of representative code.

The model for StudentProfile is implemented

as follows:

public class StudentProfileViewModel {

 public int Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string SpecialIdentificationNumber { get; set; }

 public string Email { get; set; }

 public string Address { get; set; }

 public string City { get; set; }

 public string Institution { get; set; }

 public string CountryName { get; set; }

 public List<StudentTrackViewModel> Tracks { get; set; }

 }

The controller implements the public method

GetProfile() which returns a result of

IHttpActionResult type.

Informatica Economică vol. 21, no. 2/2017 87

DOI: 10.12948/issn14531305/21.2.2017.07

public class StudentController : ApiController

{

//……….

 #region Get

 [HttpGet]

 [Route("GetProfile")]

 public IHttpActionResult GetProfile()

 {

 int studentId = this.GetStudentId();

 decimal ratio = this.GetGradeSystemRatio(this.GetInstitutionId());

 StudentProfileViewModel studentProfile = new StudentProfileViewModel();

 try

 {

 using (ApplicationDbContext context = new ApplicationDbContext())

 {

 UserRepository uRepo = new UserRepository(context);

 USemClassAssocRepository uscaRepo = new USemClassAssocRepository(context);

 SemClassAssocRepository scaRepo = new SemClassAssocRepository(context);

 TrackRecordRepository trRepo = new TrackRecordRepository(context);

 var student = uRepo.GetFullProfileById(studentId);

 //Assign base properties

 studentProfile.Address = student.Address;

 studentProfile.City = student.City;

 studentProfile.CountryName = student.Country.Name;

 studentProfile.Email = student.Email;

 studentProfile.FirstName = student.FirstName;

 studentProfile.Id = student.Id;

 studentProfile.Institution = student.Institution.Name;

 studentProfile.LastName = student.LastName;

 studentProfile.SpecialIdentificationNumber = student.LastName;

 //Build track records

 //Assign Tracks

 foreach (var track in student.TrackRecords)

 {

 StudentTrackViewModel sTrack = new StudentTrackViewModel();

 var fullTrack = trRepo.GetTrackById(track.Id);

 sTrack.Name = fullTrack.Name;

 foreach (var tscassoc in fullTrack.TSemClassAssoc)

 {

 foreach (var usclass in student.USemClassAssocs.Where(x =>

 x.SemClassAssocId == tscassoc.SemClassAssocId))

 {

 var semClass = scaRepo.GetFullById(usclass.SemClassAssocId);

 StudentClassViewModel sClass = new StudentClassViewModel

 {

 Id = usclass.Id,

 Grade = usclass.Grade / ratio,

 GradeDateUTC = usclass.GradeDateUTC,

 Name = semClass.Class.Name,

 PassStatus = usclass.PassStatus,

 SemId = semClass.SemesterId,

 SemName = semClass.Semester.Name

 };

 sTrack.Classes.Add(sClass);

 }

 }

 studentProfile.Tracks.Add(sTrack);

 }

 uRepo.Dispose();

 uscaRepo.Dispose();

 scaRepo.Dispose();

 trRepo.Dispose();

 }

 }

 catch (Exception e)

 {

 return InternalServerError(e);

 }

 return Ok(studentProfile);

}

88 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.07

Based on the implemented models and the

controllers we can get an adaptive user

interface, according to the Figure 3 and Figure

4.

Fig. 3. The Adaptive User Interface for a specific track

Fig. 4. The Adaptive User Interface for a specific class of students

The user interface uses the benefits of MVC

(Model-View-Controller) paradigm and it

gets the information offered by the

controllers. The model is implemented in our

prototype by using the entity-framework

capability in .NET platform.

6 Conclusion

The need for a performant UISB has been

addressed in several previous articles [1], [2].

After modelling the University Information

Systems using a BPMN approach, and

transforming the BPMN standard type

services into a Service Oriented Architecture,

in this article we aimed to develop a general

Informatica Economică vol. 21, no. 2/2017 89

DOI: 10.12948/issn14531305/21.2.2017.07

model and a practical implementation on the

.NET platform for the adaptive user interface

(AUI) of the University Information SOA-

BUS system (UISB).

The focus on the UI design revealed several

trends among front-end developers. We refer

mainly to the need to plan the best interface of

an application according to the devices, the

user’s needs, the technologies used, the

resources available to develop the system etc.

In this regard, we noticed that there are two

major designs used when creating the UI,

namely responsive web design (RWD) and

adaptive web design (AWD). While both of

the design practices involve different

requirements, the most used nowadays

remains the Adaptive Web Design due to the

specific optimization available according to

the device from which the user access the

application. Considering the wide spread of

the AWD we proposed an adaptive user

interface model for the UISB. Taking into

account the Cameleon reference framework

and the Model-View-Controller paradigm, we

designed the models and artefacts in the

adaption process, including the phases

covered. As we have seen, there are different

aspects that should be considered when

designing the UI for different devices. More

than that, the technologies used have a direct

impact on the UI components and the way

they are presented to the users.

Acknowledgments:

„This work was supported by a grant of the

Romanian National Authority for Scientific

Research and Innovation, CNCS –

UEFISCDI, project number PN-II-RU-TE-

2014-4-0748”.

References

[1] C. Strîmbei, O. Dospinescu, R. Strainu and

A. Nistor, “Software Architectures-

Present and Visions,” Informatica

Economica, vol. 19, no. 4, p. 13, 2015.

[2] C. Strȋmbei, O. Dospinescu, R. Strainu and

A. Nistor, “The BPMN Approach of the

University Information Systems,”

Ecoforum Journal, vol. 5, no. 2, 2016.

[3] I. Zappia, D. Giuli, F. Paganelli and L.

Chisci, Model and framework for

multimodal and adaptive user interfaces

generation in the context of business

processes development, Firenze:

Universita degli Studi Firenze, 2014.

[4] J. Vogt and A. Meier, “An adaptive user

interface framework for eHealth services

based on UIML,” in Proceedings of the

23rd Bled eConference eTrust:

Implications for the Individual, Enterprises

and Society, Bled, 2010.

[5] S. Bongartz, Y. Jin, F. Paternò, J. Rett, C.

Santoro and L. Spano, “Adaptive user

interfaces for smart environments with the

support of model-based languages,” in

International Joint Conference on Ambient

Intelligence, 2012.

[6] M. Nebeling and M. Norrie, “Responsive

design and development: methods,

technologies and current issues,” in

International Conference on Web

Engineering, 2013.

[7] E. Marcotte, “Responsive Web Design,” 5

2010. [Online]. Available:

https://alistapart.com/article/responsive-

web-design. [Accessed 09 02 2017].

[8] T. Altenburger, A. Guerriero, A. Vagner

and B. Martin, “Toward adaptive context-

aware user interfaces for better usability

and productivity in aec collaborative

tasks,” in Proceedings of the CIB W78

2010: 27th International Conference, 16-18

November, Egypt, Cairo, 2010.

[9] S. Mohorovičić, “Implementing responsive

web design for enhanced web presence,” in

Information & Communication

Technology Electronics &

Microelectronics (MIPRO), 2013.

[10] B. Gardner, “Responsive web design:

Enriching the user experience.” Sigma

Journal: Inside the Digital Ecosystem, vol.

11, no. 1, pp. 13-19, 2011.

[11] D. Bluestone, “Combining Responsive

and Adaptive Strategies to Solve Mobile

Design Challenges,” 2 10 2012. [Online].

Available:

http://uxmag.com/articles/combining-

responsive-and-adaptive-strategies-to-

solve-mobile-design-

90 Informatica Economică vol. 21, no. 2/2017

DOI: 10.12948/issn14531305/21.2.2017.07

challenges?rate=vXJQiJlBnkK7_u2h-i-

ikZIuNOxmXlqtEERci7KF0oQ.

[Accessed 18 3 2017].

[12] J. Coutaz, J. Crowley, S. Dobson and

D. Garlan, “Context is the key,”

Communications of the ACM, vol. 48, no.

3, pp. 49-53, 2005.

[13] G. Calvary, J. Coutaz, D. Thevenin, Q.

Limbourg, L. Bouillon and J.

Vanderdonckt, “A unifying reference

framework for multi-target user

interfaces,” Interacting with computers,

vol. 15, no. 3, pp. 289-308, 2003.

[14] V. Ganneau, G. Calvary and R.

Demumieux, “Learning Key Contexts of

Use in the Wild for Driving Plastic User

Interfaces Engineering,” in Engineering

Interactive Systems 2008 (2nd Conference

on Human-Centred Software Engineering

(HCSE 2008) and 7th International

workshop on TAsk MOdels and DIAgrams

(TAMODIA 2008, Pisa, Italy, 2008.

[15] K. Gajos, K. Everitt, D. Tan, M.

Czerwinski and D. Weld, “Predictability

and accuracy in adaptive user interfaces,”

in Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems,

2008.

[16] V. Jaquero, F. Montero, J. Molina and

P. Gonzalez, “Intelligent User Interfaces:

Past, Present and Future,” Engineering the

User Interface, pp. 1-12, 2009.

[17] L. Balme, A. Demeure, N. Barralon, J.

Coutaz and G. Calvary, “Cameleon-rt: A

software architecture reference model for

distributed, migratable, and plastic user

interfaces.” in European Symposium on

Ambient Intelligence, 2004.

[18] F. Paternò, C. Santoro and L. Spano,

“ConcurTaskTrees,” HIIS Laboratory,

ISTI-C.N.R., Pisa, Italy, 2010.

[19] J. Van den Bergh and K. Coninx,

“Model-based design of context-sensitive

interactive applications: a discussion of

notations,” in TAMODIA '04 Proceedings

of the 3rd annual conference on Task

models and diagrams, Prague, Czech

Republic, 2004.

Octavian DOSPINESCU graduated the Faculty of Economics and Business

Administration in 2000 and the Faculty of Informatics in 2001. He achieved

the PhD in 2009 and he has published as author or co-author over 30 articles.

He is author and co-author of 10 books and teaches as an associate professor

in the Department of Information Systems of the Faculty of Economics and

Business Administration, University Alexandru Ioan Cuza, Iasi. Since 2010

he has been a Microsoft Certified Professional, Dynamics Navision, Trade &

Inventory Module. In 2014 he successfully completed the course “Programming Mobile

Applications for Android Handheld Systems” authorized by Maryland University. He is

interested in mobile devices software, computer programming and decision support systems.

Cătălin STRÎMBEI has graduated the Faculty of Economics and Business

Administration of Al.I.Cuza University of Iaşi in 1997. He holds a PhD

diploma in Cybernetics, Statistics and Business Informatics from 2006 and he

has joined the staff of the Faculty of Economics and Business Administration

as teaching assistant in 1998 and as associate professor in 2013. Currently he

is teaching Object Oriented Programming, Multi-Tier Software Application

Development and Database Design and Administration within the

Department of Business Information Systems, Faculty of Economics and Business

Administration, Al.I.Cuza University of Iaşi. He is the author and co-author of four books and

over 30 journal articles in the field of object oriented development of business applications,

databases and object oriented software engineering.

Informatica Economică vol. 21, no. 2/2017 91

DOI: 10.12948/issn14531305/21.2.2017.07

Roxana-Marina STRAINU graduated in 2014 the Master of Business

Information Systems at the Faculty of Economics and Business

Administration, Alexandru Ioan Cuza University of Iasi. She also graduated

the Faculty of Mathematics in the year 2005. She is interested in developing

smart systems and mobile applications on Android platform. Now she is a PhD

student in the business information systems area.

Alexandra NISTOR graduated the Faculty of Economics and Business

Administration in 2011 and the Master of Business Information Systems at the

Faculty of Economics and Business Administration in 2013. Her research

interests include the use of automated testing in small and medium companies.

Now she is a PhD student in the business information systems area.

