
Informatica Economica vol. 21, no. 1/2017 5

DOI: 10.12948/issn14531305/21.1.2017.01

On the Performance of Three In-Memory Data Systems for On Line

Analytical Processing

Ionuț HRUBARU, Marin FOTACHE

Al. I. Cuza University of Iași

ionut.hrubaru@gmail.com, fotache@uaic.ro

In-memory database systems are among the most recent and most promising Big Data

technologies, being developed and released either as brand new distributed systems or as

extensions of old monolith (centralized) database systems. As name suggests, in-memory

systems cache all the data into special memory structures. Many are part of the NewSQL strand

and target to bridge the gap between OLTP and OLAP into so-called Hybrid Transactional

Analytical Systems (HTAP). This paper aims to test the performance of using such type of

systems for TPCH analytical workloads. Performance is analyzed in terms of data loading,

memory footprint and execution time of the TPCH query set for three in-memory data systems:

Oracle, SQL Server and MemSQL. Tests are subsequently deployed on classical on-disk

architectures and results compared to in-memory solutions. As in-memory is an enterprise

edition feature, associated costs are also considered.

Keywords: In Memory Databases, OLAP, Analytical Workload, TPCH

Introduction

In terms of data persistence and

processing, Big Data systems [1] [2] [3]

encompass a broad variety of technologies

such as NoSQL data stores [4] [5] [6], Hadoop

ecosystem [7] [8] and New SQL [9].

In-memory distributed systems [10] are one of

the most recent development of Big Data

technologies. They are meant to close the gap

between OLTP and OLAP workloads into a

single system by offering real time distributed

processing and analytics. Some of them are

part of the New SQL strand. They rely on a

distributed cache system to make data

processing faster by limiting the I/O disk

bottleneck. As memory price has constantly

decreased over time, an array of database

technologies has emerged on the market to

take advantage of the in-memory structures.

In-memory technologies manifest either as

new brand distributed systems (e.g. Spark

[11], MemSQL [12], Apache Ignite [13],

Geode [14], VoltDB [15]) or as a set of

features added to classical relational database

systems (Oracle, Microsoft SQL Server and

MySQL implement in-memory features in

their enterprise editions).

The main promise of in-memory persistence

concerns the data retrieval and processing

speed. Currently the trade-offs come from the

lack or poor implementation of essential

functionalities such as high availability,

storage and transactions. Additionally, cost

could raise serious concerns when adopting an

in-memory solution.

In-memory data systems have a broad range of

use cases, from OLTP (On Line Transactional

Processing) to OLAP (On Line Analytical

Processing) and even a mixture between the

two – HTAP (Hybrid Transactional

Analytical Processing).

This paper investigates data load

performance, memory footprint and query

performance of three in-memory systems –

MemSQL, Oracle and Microsoft SQL Server.

TPC-H benchmark [16] database was used for

testing the data loading and query

performance. Data was randomly generated

using dbGen tool [17] on various scale factors

(database loadings). Query performance was

assessed (on each database scale factor) by

collecting execution duration for the 22

queries in the official set provided by TPC-H.

2 In-Memory Database Systems - Current

Products and Research

Moving computation from CPU to memory

has gained considerable interest in recent

years as a solution for overcoming the

bandwidth and latency bottleneck through

1

6 Informatica Economica vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.01

releasing the CPU from some of its tasks [18].

In this new paradigm, the memory chips have

both storage and computation capability.

Great benefits can be achieved through

parallelism in the form of in-memory clusters

which use GPU (Graphical Processing Unit)

power (e.g. Kinetica [19] or SQream [20]).

Mian [21] explores the results of two in-

memory data systems deployed for healthcare

big data management, i.e. MemSQL and

VoltDB. The case study focuses on the

support for detecting medical fraud,

diagnosing diseases at an early stage and

generating actionable insights for patients,

providers and physicians. Healthcare datasets

are large in volume and unstructured, making

ad-hoc querying painfully slow, so that in-

memory systems came as a natural solution.

The paper argued that VoltDB performs

slower than MemSQL when returning high

amounts of distinct rows. Results were

inconclusive when queries were simpler and

returned a small amount of rows. Also, no

details were provided concerning the data

loads, testing methodology and results

gathering.

Sen et al. [22] describe MemSQL

optimization techniques for complex

analytical queries (requiring real-time answer)

based on heuristics that generate execution

plans. The cost-based optimizer can use either

a left-deep tree where the result of a join is

used as an outer input for the next join or a

right-deep tree where the result of a join is

used as an inner input to the next join. The

latter are called bushy plans and are generated

via query-rewrite. The effectiveness of these

techniques is analyzed against TPC-H and

TPC-DS [23] queries.

Chen and Chiang [24] consider in-memory

features an essential capability for BI

platforms and Big Data analytics. The paper

points out the RDBMSs limitation when

handling semi-structured data. A distributed

processing environment (e.g. Hadoop) seems

more appropriate for ad-hoc extraction,

parsing, indexing and analytics.

Goel [25] gives insights on SAP Hana

architecture as a system targeting large scale

analytics over real time data (high

performance OLAP and OLTP workloads

simultaneously). It is also ACID compliant

and ensures snapshot isolation through

MVCC (multi version concurrency control,

based on timestamp). The paper insists on the

main challenges for enterprise data

management: (1) data systems must provide

OLTP support so that real-time changes to

data are automatically propagated in the

queries and (2) data systems must scale to

handle huge amount of data and to support

OLAP workloads. The decoupling of core

database components (e.g. query processing,

concurrency control, and persistence) is

advocated. This design is made possible by

advances in high throughput low-latency

networks and storage devices.

Plattner [26] analyses the possibility of using

in-memory column store databases for OLTP

systems. The author argues that OLAP system

would beneficiate the most out of columnar

storage (by accessing less data compared to

row storage). Also, columnar storage could

prove suitable for update-intensive

applications.

3 Three In-Memory Systems under

Scrutiny

NewSQL databases are similar to relational

databases in guaranteeing the ACID property

of a transaction and offering higher

performance for reads and writes. They are

also similar to the NoSQL systems as they

often claim to offer enhanced performance

and integration for both OLAP and OTLP.

NewSQL systems are often in-memory

databases (IMDB). IMDB data systems are

mainly designed to:

 Accelerate information storing, retrieving

and sorting by holding all records in the

main memory.

 Use data structures especially designed for

RAM, so that there is no need to maintain

and synchronize cached copies of data.

 Provide enough speed for bridging the

OLAP- OLTP gap and remove the need

for data pre-aggregation (summaries,

cubes, etc.)

 Enable real-time analytics and situation

awareness on live transactional data.

Informatica Economica vol. 21, no. 1/2017 7

DOI: 10.12948/issn14531305/21.1.2017.01

 Support ACID (atomic, consistent,

isolated and durable) transactions, multi-

user access, event triggering, notifications

while implementing the industry-standard

SQL.

 Simplify internal optimization algorithms

and execute fewer CPU instructions

(relative to the disk-optimized data

systems).

 Generate better execution plans through

memory data structures (as opposed to

data blocks caching specific to RDBMS)

In memory data stores use either a row storage

or a columnar storage to cache the data. For

instance, MemSQL uses the row format,

Oracle uses columnar storage while SAP

Hana keeps in memory a dual format. In a row

store, new data can be easily added. However,

as a drawback, loading data leads to reading

irrelevant blocks (as the data block stores all

the record columns). In a columnar store, only

the needed data is read. Columnar storage

requires less RAM since it could be

compressed. It is well suited for analytical

queries (GROUP BY). At the same time,

decompressing the data will increase the CPU

workload as reading more columns would

involve more seeks.

The three system under scrutiny in this case

study are SQL Server, Oracle and MemSQL.

While the first two are RDBMSs with in

memory features, MemSQL is a full-fledged

IMDB.

As its official documentation states [27],

MemSQL is a distributed relational database

for both concurrent transactions and large

analytics. It uses SQL as the query language

with no major differences from the popular

RDMBS implementations. It has a simple and

understandable architecture composed of two

types of nodes:

 Aggregator nodes: store the metadata of

the distributed system, route queries and

aggregate results;

 Leaf nodes: store data and execute SQL

queries issued by the aggregator. A leaf is

a MemSQL server instance consisting of

multiple partitions. Each partition is a

database on that server. Communication

between leaves and aggregators is

implemented via SQL.

Oracle Database 12c Release 1 Enterprise

Edition provides an In-Memory Column Store

that is part of the SGA, adjustable though

INMEMORY_SIZE initialization parameter.

Columns, tables, partitions and materialized

views are stored in memory using a columnar

format that can be enabled at the tablespace

level.

Microsoft SQL Server 2014 Enterprise

Edition released an in-memory feature

optimized for OLTP. It is integrated within the

database engine. Since this is optimized for

OLTP, it is suited for specific types of

workloads. There are two concepts related to

this feature: (1) memory optimized tables

(tables which are fully stored in memory) and

(2) natively compiled stored procedures used

to access them. Memory-optimized tables

store their data into memory using multiple

versions of each row. This technique is

characterized as ‘non-blocking multi-version

optimistic concurrency control’ and

eliminates both locks and latches. It can

thereby achieve significant performance

advantages.

Both Oracle and Microsoft solutions are

available only with the enterprise edition of

the database servers. Consequently,

companies must compare licencing costs with

performance improvements for determining

the feasibility of migrating to an in-memory

architecture.

4 Methodology, Platforms, Tools

Analysis of the Oracle, SQL Server and

MemSQL in-memory features was performed

on the TPCH schema, data and queries, which

is a typical analytical workload [16]. Several

criteria were considered:

 Three scale factors: 1GB, 5 GB and 10 GB

(60 million rows in LINEITEM table);

 Data load speed;

 Table size in memory - this will determine

the capacity planning and the licensing

costs;

 Query execution time - TPCH provides 22

queries, each addressing a particular

business scenario;

8 Informatica Economica vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.01

 Queries are executed on a single node

machine - since Oracle and SQL Server

cannot distribute a query by default on a

cluster;

 Costs;

 The queries were also executed (and

results compared) on classical disk

storage.

The purpose is to compare the performance of

the three technologies; this will indicate

whether the cost of upgrading to enterprise

edition is justified.

The main characteristics of the system under

testing (SUT) were:

 Windows Server 2012 R2 Datacenter (64

bit) operating system

 32 GB RAM;

 Intel Xeon CPU X5675 @ 3.07 GHz, 6

cores, 12 logical processors;

 Broadcom BCM5709S NetXtreme II

GigE (network);

 IBM-ESXS MBF2300RC SCSI Disk.

TPCH schema was created adapting the SQL

syntax for each system. Since single node

setup was used, tables did not have to be

created in a replicated fashion. Tables were

created using in memory options specific to

each platform.

As already mentioned, TPCH consists of 22

analytical, reporting queries, designed to

answer business questions. The data model

consists of 8 tables and addresses a sales use

case. The queries have an SQL template, with

placeholders for the random input parameters

coming as inputs from the generated data. The

TPCH documentation describes the queries in

detail [16].

In SQL Server, the tables were created using

MEMORY_OPTIMIZED clause. The

durability parameter was set to

SCHEMA_AND_DATA to guarantee full

transactional consistency (that is expected in a

relational database). It is required that each

memory optimized table must have at least

one associated index. Hence, a non-clustered

index was created on the primary key (since

most of the queries use inequality operators).

On the other hand, hash indexes are

recommended for queries containing mainly

equality operators (which is not the case for

TPCH queries). The amount of memory was

increased for the SQL Server instance (a

vendor recommendation).

TPCH data was generated using DBGen tool

[17] for all three scale factors. The data was

loaded in SQL Server using BULK INSERT.

After the data loading, SQL Server

automatically gathers statistics about the

tables. It also builds histograms with data

distribution that can help the cost-based

optimizer in generating better execution plans.

After data loading, tables were checked for

being pinned into memory. Cache was cleared

(using DBCC commands) before each query

run within the same scale factor. SET statistics

IO was used to register the execution times,

and the queries were executed in SQL Server

Management Studio. The number of records

returned was relatively small (up to 2000) and

both the client tool and the database server

were installed on the same local machine.

Consequently, the results are not supposed to

be influenced by the network traffic. In order

to free the memory, SQL Server was rebooted

after the run of each scale factor query set.

All TPCH queries were generated with QGen

utility [16] and the syntax was adapted to

match SQL Server ANSI implementation.

Before 12c enterprise edition, Oracle provided

pin table option, i.e. a table could be cached in

memory. Pin table was an incipient solution

to bypass the disk and cache the blocks into

memory. The execution plans generated by

the optimizer were unchanged.

In Oracle 12 EE in-memory feature is

integrated within the database engine. The

columnar storage can be compressed.

The cost-based optimizer fully manages the

in-memory data and generates new types of

optimized execution plans. Since it is column-

oriented, Oracle in-memory is better suited for

OLAP workloads, unlike SQL Server, which

seems to target mainly the OLTP systems.

Oracle 12c introduces a new way of handling

databases, using a container database (cdb)

and multiple pluggable databases (pdb). A

local user was created in a pluggable database

and special permissions were granted.

Database memory was increased to account

for in-memory tables. Tables were created

Informatica Economica vol. 21, no. 1/2017 9

DOI: 10.12948/issn14531305/21.1.2017.01

using IN MEMORY option set on critical, so

that whenever the database is restarted, the

tables will still be cached. SQL Developer was

used for interacting with the database. The

data and queries have been created with the

same tools, dbGen and QGen. Data was

loaded with sqldr utility. A control file (ctl)

was built for each table to specify the table

attributes. The control file was further used as

parameter in the sqldr utility. All the

commands were grouped in a batch file which

was launched to load the data. After data

loading, the tables were accessed through a

SQL query for warming up the cache.

Otherwise some of the data would not be

pinned into the memory. This can be checked

with some dictionary views, such as

v$im_segments. Statistics were gathered

manually by issuing a

DBMS_GATHER_STATS command (in

SQL Server this task was performed

automatically). TPCH query syntax was

adapted to Oracle SQL dialect.

MemSQL uses an in-memory row store and a

disk columnar storage for analytical

workloads that do not fit into memory.

MemSQL runs on Linux only, so the setup

procedure is different from its counterparts.

After the installation, a web UI (User

Interface) console called MemSQL Ops is

available for administration. Database

creation script and load were customized to

support MemSQL syntax. MemSQL is

MySQL compliant. For connecting to the

MemSQL server (which deploys one leaf

node and one coordinator), the MySQL client

was installed and then used to create

databases. For query execution, MySQL

Workbench tool was used.

5 Results

This experimental study was performed

targeting four main questions:

 What are the loading times for all scale

factors?

 How much memory is required by the

data?

 Which platform performs better, under

default settings and with no performance

tuning applied?

 Does the performance gain of in-memory

options justify costs of upgrading to

enterprise editions?

The discussion will reveal some particularities

of each platform and also will point out the

bottlenecks observed during testing. Queries

were executed 10 times each and an average

was calculated to ensure the consistency of the

tests.

Data load, memory footprint and query

execution

Table load is performed in SQL Server using

BULK INSERT command. Load time

increased with the scale factor (the number of

records in each table).

The .csv files containing 1 GB of data (scale

factor = 1) took 1.5 GB of RAM in SQL

Server. Increasing by 50% the required space

proves that SQL Server does not properly

optimize in-memory data structure.

Consequently, the memory requirements are

higher for this database server (and so are the

costs).

When it comes to query execution, it was

noticed that the first execution of the query

took much longer than the subsequent ones.

The explanation lies in the parse and compile

phase of the execution which is longer for first

run because of building the query execution

plan.

Also noticeable was query Q22 did not

complete for scale factor of 5GB which came

as a surprise considering that for 10GB it was

executed successfully in 20 seconds at the first

run. On further examination it appears that the

optimizer did not succeed in generating an

execution plan for the query. This proves the

instability of the in-memory feature, a

consequence of its immaturity. Other queries

that took longer time were Q1, Q12 and Q19

which were affected by the parsing time.

Subsequent runs completed very fast

compared to the first runs. SQL Server scaled

well when increasing the scale factor.

Execution duration increased accordingly

within the same ratio from SF1 to SF5 and

SF10.

In Oracle, data was loaded with sqldr utility.

Loading time was correlated with the scale

factor. Memory usage was around 650 MB for

10 Informatica Economica vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.01

1 GB of raw (.csv) data which shows that

Oracle better optimizes its in-memory

structures. This a consequence of the

compression Oracle applies for columnar

storage.

Also, by contrast to SQL Server, Oracle did

not manifest any problem when generating the

query execution plan. There were no major

differences between duration of each query’s

first and subsequent runs. Oracle has

obviously consistent and predictable

execution times.

Query duration increases proportionally with

the scale factor, from SF1 to SF5 and then

SF10.

However, Oracle manifested problems with

the correlated subqueries for which execution

time was very inconsistent. One example is

Q20 (find suppliers in a particular nation

having selected parts that may be candidates

for a promotional offer) [16]. When executed

first two runs it took 66-67 seconds, while

further tun took 11-12 seconds. This was

reproduced consistently, no matter how many

times the test was repeated, even with server

restarted.

Of the three systems, MemSQL is the least

optimized in terms of memory footprint.

Loading 1 GB of raw (.csv) data required

almost 3 GB of RAM. This loading ratio

RAM/raw data) of 3 was recorded also for

SF5. In the case of SF10, MemSQL could not

load the data for Lineitem table, although the

machine had a fairly large amount of memory

(32GB). If the loading ratio were the same, it

would probably have taken at least 30 GB of

RAM to load all the data. The error thrown

was: Error Code: 1712. Leaf Error

(85.122.22.25:3307): Not enough memory

available to complete the current request. The

request was not processed. Also MemSQL

started displaying memory error messages

when the buffer filled up and.

As for SQL Server, in MemSQL the

subsequent query executions were much

faster (for which only fetch times are

reported). Q11 for SF5 yielded incorrect

results and a disproportionate long execution

time. The root cause was identified in the

HAVING clause which used a subquery and

could be reported as a MemSQL bug.

When it comes to scalability, MemSQL

performs well. Most of the queries did not

show five-times increase in execution time

when moving from SF1 to SF5.

6 Discussion

Analysis of the systems under scrutiny was

performed on three axes: (1) data load, (2)

memory usage and (3) query execution time.

Figure 1 compares data load timings for each

in-memory platform.

Fig. 1. Load time comparison between

platforms

It is evident that SQL Server performed best.

MemSQL reported also good results, as long

as the data fitted into memory. On a 32 GB

machine, SF 10 data could not be loaded

because of memory exhaustion. This is a

consequence of the MemSQL approach to in-

memory data storage. Cost would raise

spectacularly as MemSQL offers licences per

number of GB of RAM, and not CPU cores.

In Oracle data loading took surprisingly long

time. That could be explained by the fact that

sqldr utility does not parallelize the load and

does not use all the available CPU cores.

External tables could prove a more viable

solution for loading the data.

When it comes to scalability, this is achieved

by all the three platforms, data load duration

being correlated with the scale factor.

In terms of table size in memory (Figure 2),

Oracle performs better than SQL Server and

MemSQL. This could be explained by

Oracle’s compressed columnar storage

whereas the other two are using a row storage.

As previously mentioned, MemSQL requires

a lot more RAM for the loaded data.

Informatica Economica vol. 21, no. 1/2017 11

DOI: 10.12948/issn14531305/21.1.2017.01

Fig. 2. Memory footprint on each platform

Moving forward to the analysis of query

execution time, it was expected that Oracle

would performs better for analytical queries

(because of the columnar data format). On

SF1 Oracle performed best for all the queries,

except Q1, Q18 and Q21 where MemSQL

outperforms it and also Q4 where SQL Server

has the best performance as seen on Figure 3.

Fig. 3. Query execution time for SF 1

Moving to SF 5, MemSQL started to show its

strength outperforming SQL Server and

matching Oracle in most of the cases, except

for a couple of notable cases which have

already been discussed: Q11 where it gave

incorrect results after a long phase of parsing,

Q13 and Q18. Interestingly, SQL Server and

Oracle had issues with Q1, while MemSQL

managed to complete it a lot faster. Figure 4

shows execution times for SF 5.

Fig. 4. Query execution time for SF 5

For SF 10, MemSQL does not appear in the

results because the data did not fit into

memory. The results were mixed between

SQL Server and Oracle, as seen in Figure 5.

Fig. 5. Query execution time for SF 10

A final chart (Figure 6) combines total

execution time for all queries and scale

factors. Q11 was removed from the chart since

it witnessed a MemSQL bug. Analogously,

Q22 was removed for SQL Server on SF 5

because the query could not be completed.

The chart confirms that Oracle did perform

better than SQL Server on all scale factors. On

SF1 Oracle performed better than MemSQL.

For SF 5 MemSQL did better, probably

because of its latch-free in-memory structures,

but it remained behind Oracle. One can

speculate on what will happen on larger scale

factors. SQL Server seems to lag the other two

platforms. Results could prove different when

using the most recent release, SQL Server

2016, since in-memory feature was enhanced

and it beneficiates from a combination

between in-memory row and column storage.

The chart also suggests that when scale factor

increased, the gap between Oracle and SQL

Server reduced, so it would be interesting to

test larger database sizes such as 100 GB, or

even 1TB.

Fig. 6. Total execution time on all platforms

and every scale factor

12 Informatica Economica vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.01

Decision about upgrading to the enterprise

editions should consider the cost. Table 1

displays a cost comparison between standard

and enterprise edition (prices are in dollars).

They do not include software update license

and support which involve additional costs.

Table 1. Enterprise vs standard edition price

 SQL

Server

Oracle MemSQL

Standard

Edition

$3717

per

core (in

2 core

packs)

$17500

per

core

Free

(cannot be

used in

production)

Enterprise

Edition

$14256

per

core (in

2 core

packs)

$47500 $1000 per

GB of

RAM

MemSQL does not provide a standard edition

per se. The freely available Community

edition is not recommended to be used in

production environments.

Further, the same tests were deployed for

comparing in-memory versus on-disk storage

for each platform. No indexes or any other

optimization techniques were considered for

on-disk storage tests.

With two exceptions, all queries took less time

to be completed on in-memory systems.

Surprisingly, on-disk configuration performed

better for Q1 and Q9 in SQL Server. In-

memory proved to be two to fifteen times

faster than on-disk, with an average of 2.63 as

seen in Figure 7.

Fig. 7. SQL Server in-memory vs. on disk

performance

In Oracle only Q1 was completed faster on

disk, as Figure 8 shows. That could be

explained by the larger number of various

aggregate functions the query contains.

Fig. 8. Oracle in-memory vs on disk

performance

Figure 9 presents an overall comparison of the

query duration between in-memory and on-

disk.

Fig. 9. Total time in-memory vs on disk

Results show a close performance between

Oracle and SQL Server especially in the case

of on-disk storage. Relative to on-disk, in-

memory performance improved by a factor of

3.

Given the cost of Enterprise Edition for both

technologies which is three to four times

higher, the performance gain might not be

feasible.

Currently in-memory feature seems to be a

rather immature technology and more of a

marketing buzz. Nevertheless, it looks

promising on the long run.

7 Conclusions and Further Research

For the OLAP workload, the 22 TPCH queries

were tested against different scale factors

(SF1, SF5 and SF10). Oracle, SQL Server and

688,896 565,229

1817,274 1804,794

0

500

1000

1500

2000

SQL OracleTo
ta

l T
im

e
(s

ec
s)

SQL vs. Oracle 10GB

In memory On disk

Informatica Economica vol. 21, no. 1/2017 13

DOI: 10.12948/issn14531305/21.1.2017.01

MemSQL were the tested technologies for

three separate scenarios: loading data,

memory usage and execution times. For

loading data into memory, Oracle had the

worst performance, which requires a different

approach such as external tables. Loading the

data should not impact the daily business

activities since it can be performed out of the

office hours. Consequently, the data

processing could beneficiate from the warm

cache for optimal performance.

The size of required memory for the data

revealed that MemSQL consumes three times

more RAM than the other two platforms, an

effect of in-memory data structures design.

The results of TPCH queries run revealed best

results for Oracle. MemSQL could not be

tested for all scale factors because SF10 data

could not fit into memory. For the other two

SFs it showed promising results. When

comparing with on-disk performance, in-

memory showed a 3x performance increase

for both Oracle and SQL Server. Since these

are Enterprise Edition options that cost 3-4

times more than the standard editions,

companies should carefully evaluate benefits

and costs before taking the decision to

upgrade.

For future research, in-memory distributed

systems will be under scrutiny. Many

products, both commercial and open source

have emerged recently: Apache Ignite,

Apache Spark, Geode, Greenplum, Exasol,

Sap Hana. They address not only analytical

workloads but bridging the gap between

OLTP and OLAP into the new hype concept:

HTAP.

Also, various optimizations techniques,

testing tools and platforms could be used, such

as:

 Use schema-only option for SQL Server

which will persist data only in memory

(not providing durability);

 Compare current results with Oracle pin-

table option, available in the standard

edition;

 Use more nodes and evaluate the

MemSQL scalability;

 Create indexes based on predicates from

WHERE clauses, JOIN, ORDER BY and

GROUP BY;

 Inspect the execution plans and verify the

steps that have the highest costs and

optimize them;

 Load more data for scale factors up to 100

GB and more;

 Deploy the tests in Amazon cloud to

confirm how IOPS (….) and network

bandwidth might have an impact;

 Use columnar storage in MemSQL and

SQL Server which might prove more

appropriate for analytical workloads;

 Use SQL Server 2016 which combines in-

memory with columnar storage;

 Test performance when increasing the

number of concurrent users (e.g. using

JMeter);

 Test also OLTP workloads, such as TPC-

C.

References

[1] H.U. Buhl, M. Röglinger, and F. Moser,

“Big Data: A Fashionable Topic with(out)

Sustainable Relevance for Research and

Practice?,” Business & Information

Systems Engineering, Vol. 5, Issue 2,

2013, ISSN: 2363-7005, pp.65-69

[2] M. Kowalczyk and P. Buxmann, “Big

Data and Information Processing in

Organizational Decision Processes,”

Business & Information Systems

Engineering, Vol. 6, Issue 5, 2014, ISSN:

2363-7005, pp.267-278

[3] O. Ylijoki, J. Porras, "Perspectives to

Definition of Big Data: A Mapping Study

and Discussion," Journal of Innovation

Management, Vol. 4, Issue 1, 2016, ISSN

2183-0606, pp. 69-91

[4] R. Cattell, "Scalable SQL and NoSQL

Data Stores," ACM SIGMOD Record, Vol.

39, Issue 4, 2010, ISSN 0163-5808, pp.

12-27

[5] D.I. Cogean, M. Fotache, and V. Greavu-

Serban, “NoSQL in Higher Education. A

Case Study,” Proc. of the 12th

International Conference on Informatics

in Economy (IE 2013), pp.352-360,

Bucuresti, Romania

[6] I. Lungu, and B.G. Tudorica, “The

Development of a Benchmark Tool for

14 Informatica Economica vol. 21, no. 1/2017

DOI: 10.12948/issn14531305/21.1.2017.01

NoSQL Databases,” Database Systems

Journal, Vol. 4, Issue 2, 2013, ISSN:

2069-3230, pp.13-20

[7] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu,

“Distributed data management using

MapReduce,” ACM Computing Surveys,

Vol. 46, Issue 3, Article 31, 2014, ISSN

0360-0300

[8] I. Hrubaru and M. Fotache, “On a Hadoop

Cliché: Physical and Logical Models

Separation,” Proc. of the 14th

International Conference on Informatics

in Economy (IE 2015), pp. 357-363,

Bucharest, Romania, 2015

[9] M. Stonebraker, “New opportunities for

New SQL,” Communications of the ACM,

Vol. 55, Issue 11, 2012, ISSN 0001-0782,

pp.10-11

[10] A. Pavlo and M. Aslett, ”What's Really

New with NewSQL?,” ACM SIGMOD

Record, Vol. 45, Issue 2, 2016, ISSN

0163-5808, pp.45-55.

[11] Apache Spark, http://spark.apache.org/

[December 12, 2016]

[12] MemSQL, http://www.memsql.com/

[December 12, 2016]

[13] Apache Ignite, https://ignite.apache.org/

[December 12, 2016]

[14] Apache Geode https://geode.apache.org/

 [December 12, 2016]

[15] VoltDB, https://www.voltdb.com/

[December 12, 2016]

[16] TPC BENCHMARK H (Decision

Support) Standard Specification Revision

2.17.1, 2014, Internet:

http://www.tpc.org/tpc_documents_curre

nt_versions/pdf/tpc-h_v2.17.1.pdf [Apr.

10, 2016].

[17] T. Kejser, “Tpch-dbgen Overview,”

2014,Internet:

https://bitbucket.org/tkejser/tpch-dbgen ,

[December. 12, 2016].

[18] P. Trancoso, “Moving to memoryland:

in-memory computation for existing

applications,” Proceedings of the 12th

ACM International Conference on

Computing Frontiers (CF '15)- Ischia,

Italy, ACM, New York, NY, USA, 2015,

Article 32 , 6 pages.

[19] M. Nemschoff, “How to Simplify

Streaming Analytics Using a GPU-

Accelerated In-Memory Database”,

Kinetica Blog,

http://www.kinetica.com/blog/simplify-

streaming-analytics/ [December 12, 2016]

[20] SQream DB GPU-Based SQL Database

Technical Overview White Paper,

http://www.bigdataleadersforum.com/file

s/sqream_db_tech_whitepaper_web.pdf

[December 12, 2016]

[21] M. Mian, “Healthcare Big Data

Exploration in Real-Time”, University of

Washington, 2014

[22] R. Sen, J. Chen, N. Jimsheleishvilli

“Query Optimization Time: The New

Bottleneck in Real-time Analytics”, ACM,

August 2015.

[23] TPC Benchmark DS (TPC-DS),

http://www.tpc.org/tpcds/ [December 12,

2016]

[24] H. Chen, R. Chiang, “Business

Intelligence and Analytics: From Big Data

to Big Impact”, MIS Quarterly., Vol 36 No

4, pp. 1165-1188, December 2012

[25] A. Goel et al, “Towards Scalable

Realtime Analytics: An Architecture for

Scaleout of OLxP Workloads”,

Proceedings of the VLDB Endowment,

Vol. 8, No. 12, August 2015

[26] H. Plattner et al, “A Common Database

Approach for OLTP and OLAP Using an

In-Memory Column Database”,

SIGMOD’09, June 29–July 2, 2009

November (2014), pp. 11-22

[27] Official MemSQL documentation,

http://docs.memsql.com/docs [December

12, 2016]

Informatica Economica vol. 21, no. 1/2017 15

DOI: 10.12948/issn14531305/21.1.2017.01

Ionuț HRUBARU graduated Business Informatics bachelor programme at Al.

I. Cuza of Iași in 2005. He got a master’s degree in Business Information

Systems. In 2016 he defended his PhD thesis Polyglot Persistence for Business

Applications. In over 13 years of IT experience Ionut has filled various

positions such as programmer, database administrator, and team leader.

Currently he is software engineering manager for a local (Iași) IT company.

He is particularly interested in Database technology, NoSql, Big Data,

leadership and personal development.

Marin FOTACHE has graduated (long time ago) the Faculty of Economics

at Al. I. Cuza University of Iasi, Romania. He holds a PhD diploma in Business

Information Systems (Business Informatics) from 2000 and he had gone

through all didactic positions since 1990 when he joined the staff of Al. I. Cuza

University, from teaching assistant in 1990, to full professor in 2002. Currently

he is professor within the Department of Accounting, Business Informatics

and Statistics in the Faculty of Economics and Business Administration at

Alexandru Ioan Cuza University. He is the (co)author of books and journal articles in the fields

of knowledge management, SQL, database design, NoSQL, Big Data, and R.

