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In-memory database systems are among the most recent and most promising Big Data 

technologies, being developed and released either as brand new distributed systems or as 

extensions of old monolith (centralized) database systems. As name suggests, in-memory 

systems cache all the data into special memory structures. Many are part of the NewSQL strand 

and target to bridge the gap between OLTP and OLAP into so-called Hybrid Transactional 

Analytical Systems (HTAP). This paper aims to test the performance of using such type of 

systems for TPCH analytical workloads. Performance is analyzed in terms of data loading, 

memory footprint and execution time of the TPCH query set for three in-memory data systems: 

Oracle, SQL Server and MemSQL. Tests are subsequently deployed on classical on-disk 

architectures and results compared to in-memory solutions. As in-memory is an enterprise 

edition feature, associated costs are also considered.    
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Introduction 

In terms of data persistence and 

processing, Big Data systems [1] [2] [3] 

encompass a broad variety of technologies 

such as NoSQL data stores [4] [5] [6], Hadoop 

ecosystem [7] [8] and New SQL [9]. 

In-memory distributed systems [10] are one of 

the most recent development of Big Data 

technologies. They are meant to close the gap 

between OLTP and OLAP workloads into a 

single system by offering real time distributed 

processing and analytics. Some of them are 

part of the New SQL strand. They rely on a 

distributed cache system to make data 

processing faster by limiting the I/O disk 

bottleneck. As memory price has constantly 

decreased over time, an array of database 

technologies has emerged on the market to 

take advantage of the in-memory structures. 

In-memory technologies manifest either as 

new brand distributed systems (e.g. Spark 

[11], MemSQL [12], Apache Ignite [13], 

Geode [14], VoltDB [15]) or as a set of 

features added to classical relational database 

systems (Oracle, Microsoft SQL Server and 

MySQL implement in-memory features in 

their enterprise editions).  

The main promise of in-memory persistence 

concerns the data retrieval and processing 

speed. Currently the trade-offs come from the 

lack or poor implementation of essential 

functionalities such as high availability, 

storage and transactions. Additionally, cost 

could raise serious concerns when adopting an 

in-memory solution. 

In-memory data systems have a broad range of 

use cases, from OLTP (On Line Transactional 

Processing) to OLAP (On Line Analytical 

Processing) and even a mixture between the 

two – HTAP (Hybrid Transactional 

Analytical Processing). 

This paper investigates data load 

performance, memory footprint and query 

performance of three in-memory systems – 

MemSQL, Oracle and Microsoft SQL Server. 

TPC-H benchmark [16] database was used for 

testing the data loading and query 

performance. Data was randomly generated 

using dbGen tool [17] on various scale factors 

(database loadings). Query performance was 

assessed (on each database scale factor) by 

collecting execution duration for the 22 

queries in the official set provided by TPC-H. 

 

2 In-Memory Database Systems - Current 

Products and Research 

Moving computation from CPU to memory 

has gained considerable interest in recent 

years as a solution for overcoming the 

bandwidth and latency bottleneck through 
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releasing the CPU from some of its tasks [18]. 

In this new paradigm, the memory chips have 

both storage and computation capability. 

Great benefits can be achieved through 

parallelism in the form of in-memory clusters 

which use GPU (Graphical Processing Unit) 

power (e.g. Kinetica [19] or SQream [20]). 

Mian [21] explores the results of two in-

memory data systems deployed for healthcare 

big data management, i.e. MemSQL and 

VoltDB. The case study focuses on the 

support for detecting medical fraud, 

diagnosing diseases at an early stage and 

generating actionable insights for patients, 

providers and physicians. Healthcare datasets 

are large in volume and unstructured, making 

ad-hoc querying painfully slow, so that in-

memory systems came as a natural solution. 

The paper argued that VoltDB performs 

slower than MemSQL when returning high 

amounts of distinct rows. Results were 

inconclusive when queries were simpler and 

returned a small amount of rows. Also, no 

details were provided concerning the data 

loads, testing methodology and results 

gathering.  

Sen et al. [22] describe MemSQL 

optimization techniques for complex 

analytical queries (requiring real-time answer) 

based on heuristics that generate execution 

plans. The cost-based optimizer can use either 

a left-deep tree where the result of a join is 

used as an outer input for the next join or a 

right-deep tree where the result of a join is 

used as an inner input to the next join. The 

latter are called bushy plans and are generated 

via query-rewrite. The effectiveness of these 

techniques is analyzed against TPC-H and 

TPC-DS [23] queries.  

Chen and Chiang [24] consider in-memory 

features an essential capability for BI 

platforms and Big Data analytics. The paper 

points out the RDBMSs limitation when 

handling semi-structured data. A distributed 

processing environment (e.g. Hadoop) seems 

more appropriate for ad-hoc extraction, 

parsing, indexing and analytics. 

Goel [25] gives insights on SAP Hana 

architecture as a system targeting large scale 

analytics over real time data (high 

performance OLAP and OLTP workloads 

simultaneously). It is also ACID compliant 

and ensures snapshot isolation through 

MVCC (multi version concurrency control, 

based on timestamp). The paper insists on the 

main challenges for enterprise data 

management: (1) data systems must provide 

OLTP support so that real-time changes to 

data are automatically propagated in the 

queries and (2) data systems must scale to 

handle huge amount of data and to support 

OLAP workloads. The decoupling of core 

database components (e.g. query processing, 

concurrency control, and persistence) is 

advocated. This design is made possible by 

advances in high throughput low-latency 

networks and storage devices.  

Plattner [26] analyses the possibility of using 

in-memory column store databases for OLTP 

systems. The author argues that OLAP system 

would beneficiate the most out of columnar 

storage (by accessing less data compared to 

row storage). Also, columnar storage could 

prove suitable for update-intensive 

applications. 

 

3 Three In-Memory Systems under 

Scrutiny 

NewSQL databases are similar to relational 

databases in guaranteeing the ACID property 

of a transaction and offering higher 

performance for reads and writes. They are 

also similar to the NoSQL systems as they 

often claim to offer enhanced performance 

and integration for both OLAP and OTLP. 

NewSQL systems are often in-memory 

databases (IMDB). IMDB data systems are 

mainly designed to: 

 Accelerate information storing, retrieving 

and sorting by holding all records in the 

main memory. 

 Use data structures especially designed for 

RAM, so that there is no need to maintain 

and synchronize cached copies of data. 

 Provide enough speed for bridging the 

OLAP- OLTP gap and remove the need 

for data pre-aggregation (summaries, 

cubes, etc.) 

 Enable real-time analytics and situation 

awareness on live transactional data. 
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 Support ACID (atomic, consistent, 

isolated and durable) transactions, multi-

user access, event triggering, notifications 

while implementing the industry-standard 

SQL. 

 Simplify internal optimization algorithms 

and execute fewer CPU instructions 

(relative to the disk-optimized data 

systems). 

 Generate better execution plans through 

memory data structures (as opposed to 

data blocks caching specific to RDBMS) 

In memory data stores use either a row storage 

or a columnar storage to cache the data. For 

instance, MemSQL uses the row format, 

Oracle uses columnar storage while SAP 

Hana keeps in memory a dual format. In a row 

store, new data can be easily added. However, 

as a drawback, loading data leads to reading 

irrelevant blocks (as the data block stores all 

the record columns). In a columnar store, only 

the needed data is read. Columnar storage 

requires less RAM since it could be 

compressed. It is well suited for analytical 

queries (GROUP BY). At the same time, 

decompressing the data will increase the CPU 

workload as reading more columns would 

involve more seeks.  

The three system under scrutiny in this case 

study are SQL Server, Oracle and MemSQL. 

While the first two are RDBMSs with in 

memory features, MemSQL is a full-fledged 

IMDB.  

As its official documentation states [27], 

MemSQL is a distributed relational database 

for both concurrent transactions and large 

analytics. It uses SQL as the query language 

with no major differences from the popular 

RDMBS implementations. It has a simple and 

understandable architecture composed of two 

types of nodes: 

 Aggregator nodes: store the metadata of 

the distributed system, route queries and 

aggregate results; 

 Leaf nodes: store data and execute SQL 

queries issued by the aggregator. A leaf is 

a MemSQL server instance consisting of 

multiple partitions. Each partition is a 

database on that server. Communication 

between leaves and aggregators is 

implemented via SQL. 

Oracle Database 12c Release 1 Enterprise 

Edition provides an In-Memory Column Store 

that is part of the SGA, adjustable though 

INMEMORY_SIZE initialization parameter. 

Columns, tables, partitions and materialized 

views are stored in memory using a columnar 

format that can be enabled at the tablespace 

level.  

Microsoft SQL Server 2014 Enterprise 

Edition released an in-memory feature 

optimized for OLTP. It is integrated within the 

database engine. Since this is optimized for 

OLTP, it is suited for specific types of 

workloads. There are two concepts related to 

this feature: (1) memory optimized tables 

(tables which are fully stored in memory) and 

(2) natively compiled stored procedures used 

to access them. Memory-optimized tables 

store their data into memory using multiple 

versions of each row. This technique is 

characterized as ‘non-blocking multi-version 

optimistic concurrency control’ and 

eliminates both locks and latches. It can 

thereby achieve significant performance 

advantages.  

Both Oracle and Microsoft solutions are 

available only with the enterprise edition of 

the database servers. Consequently, 

companies must compare licencing costs with 

performance improvements for determining 

the feasibility of migrating to an in-memory 

architecture. 

 

4 Methodology, Platforms, Tools 

Analysis of the Oracle, SQL Server and 

MemSQL in-memory features was performed 

on the TPCH schema, data and queries, which 

is a typical analytical workload [16]. Several 

criteria were considered: 

 Three scale factors: 1GB, 5 GB and 10 GB 

(60 million rows in LINEITEM table); 

 Data load speed; 

 Table size in memory - this will determine 

the capacity planning and the licensing 

costs; 

 Query execution time - TPCH provides 22 

queries, each addressing a particular 

business scenario; 
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 Queries are executed on a single node 

machine - since Oracle and SQL Server 

cannot distribute a query by default on a 

cluster; 

 Costs; 

 The queries were also executed (and 

results compared) on classical disk 

storage. 

The purpose is to compare the performance of 

the three technologies; this will indicate 

whether the cost of upgrading to enterprise 

edition is justified. 

The main characteristics of the system under 

testing (SUT) were:  

 Windows Server 2012 R2 Datacenter (64 

bit) operating system  

 32 GB RAM;  

 Intel Xeon CPU X5675 @ 3.07 GHz, 6 

cores, 12 logical processors;  

 Broadcom BCM5709S NetXtreme II 

GigE (network);  

 IBM-ESXS MBF2300RC SCSI Disk. 

TPCH schema was created adapting the SQL 

syntax for each system. Since single node 

setup was used, tables did not have to be 

created in a replicated fashion. Tables were 

created using in memory options specific to 

each platform.  

As already mentioned, TPCH consists of 22 

analytical, reporting queries, designed to 

answer business questions. The data model 

consists of 8 tables and addresses a sales use 

case. The queries have an SQL template, with 

placeholders for the random input parameters 

coming as inputs from the generated data. The 

TPCH documentation describes the queries in 

detail [16].  

In SQL Server, the tables were created using 

MEMORY_OPTIMIZED clause. The 

durability parameter was set to 

SCHEMA_AND_DATA to guarantee full 

transactional consistency (that is expected in a 

relational database). It is required that each 

memory optimized table must have at least 

one associated index. Hence, a non-clustered 

index was created on the primary key (since 

most of the queries use inequality operators). 

On the other hand, hash indexes are 

recommended for queries containing mainly 

equality operators (which is not the case for 

TPCH queries). The amount of memory was 

increased for the SQL Server instance (a 

vendor recommendation).  

TPCH data was generated using DBGen tool 

[17] for all three scale factors. The data was 

loaded in SQL Server using BULK INSERT. 

After the data loading, SQL Server 

automatically gathers statistics about the 

tables. It also builds histograms with data 

distribution that can help the cost-based 

optimizer in generating better execution plans. 

After data loading, tables were checked for 

being pinned into memory. Cache was cleared 

(using DBCC commands) before each query 

run within the same scale factor. SET statistics 

IO was used to register the execution times, 

and the queries were executed in SQL Server 

Management Studio. The number of records 

returned was relatively small (up to 2000) and 

both the client tool and the database server 

were installed on the same local machine. 

Consequently, the results are not supposed to 

be influenced by the network traffic. In order 

to free the memory, SQL Server was rebooted 

after the run of each scale factor query set.  

All TPCH queries were generated with QGen 

utility [16] and the syntax was adapted to 

match SQL Server ANSI implementation. 

Before 12c enterprise edition, Oracle provided 

pin table option, i.e. a table could be cached in 

memory. Pin table was an incipient solution 

to bypass the disk and cache the blocks into 

memory. The execution plans generated by 

the optimizer were unchanged. 

In Oracle 12 EE in-memory feature is 

integrated within the database engine. The 

columnar storage can be compressed. 

The cost-based optimizer fully manages the 

in-memory data and generates new types of 

optimized execution plans. Since it is column-

oriented, Oracle in-memory is better suited for 

OLAP workloads, unlike SQL Server, which 

seems to target mainly the OLTP systems.  

Oracle 12c introduces a new way of handling 

databases, using a container database (cdb) 

and multiple pluggable databases (pdb). A 

local user was created in a pluggable database 

and special permissions were granted. 

Database memory was increased to account 

for in-memory tables. Tables were created 



Informatica Economica vol. 21, no. 1/2017                                                                                              9 

DOI: 10.12948/issn14531305/21.1.2017.01 

using IN MEMORY option set on critical, so 

that whenever the database is restarted, the 

tables will still be cached. SQL Developer was 

used for interacting with the database. The 

data and queries have been created with the 

same tools, dbGen and QGen. Data was 

loaded with sqldr utility. A control file (ctl) 

was built for each table to specify the table 

attributes. The control file was further used as 

parameter in the sqldr utility. All the 

commands were grouped in a batch file which 

was launched to load the data. After data 

loading, the tables were accessed through a 

SQL query for warming up the cache. 

Otherwise some of the data would not be 

pinned into the memory. This can be checked 

with some dictionary views, such as 

v$im_segments. Statistics were gathered 

manually by issuing a 

DBMS_GATHER_STATS command (in 

SQL Server this task was performed 

automatically). TPCH query syntax was 

adapted to Oracle SQL dialect.  

MemSQL uses an in-memory row store and a 

disk columnar storage for analytical 

workloads that do not fit into memory. 

MemSQL runs on Linux only, so the setup 

procedure is different from its counterparts. 

After the installation, a web UI (User 

Interface) console called MemSQL Ops is 

available for administration. Database 

creation script and load were customized to 

support MemSQL syntax. MemSQL is 

MySQL compliant. For connecting to the 

MemSQL server (which deploys one leaf 

node and one coordinator), the MySQL client 

was installed and then used to create 

databases. For query execution, MySQL 

Workbench tool was used.  

 

5 Results 

This experimental study was performed 

targeting four main questions: 

 What are the loading times for all scale 

factors? 

 How much memory is required by the 

data? 

 Which platform performs better, under 

default settings and with no performance 

tuning applied? 

 Does the performance gain of in-memory 

options justify costs of upgrading to 

enterprise editions? 

The discussion will reveal some particularities 

of each platform and also will point out the 

bottlenecks observed during testing. Queries 

were executed 10 times each and an average 

was calculated to ensure the consistency of the 

tests. 

Data load, memory footprint and query 

execution 

Table load is performed in SQL Server using 

BULK INSERT command. Load time 

increased with the scale factor (the number of 

records in each table). 

The .csv files containing 1 GB of data (scale 

factor = 1) took 1.5 GB of RAM in SQL 

Server. Increasing by 50% the required space 

proves that SQL Server does not properly 

optimize in-memory data structure. 

Consequently, the memory requirements are 

higher for this database server (and so are the 

costs).  

When it comes to query execution, it was 

noticed that the first execution of the query 

took much longer than the subsequent ones. 

The explanation lies in the parse and compile 

phase of the execution which is longer for first 

run because of building the query execution 

plan. 

Also noticeable was query Q22 did not 

complete for scale factor of 5GB which came 

as a surprise considering that for 10GB it was 

executed successfully in 20 seconds at the first 

run. On further examination it appears that the 

optimizer did not succeed in generating an 

execution plan for the query. This proves the 

instability of the in-memory feature, a 

consequence of its immaturity. Other queries 

that took longer time were Q1, Q12 and Q19 

which were affected by the parsing time. 

Subsequent runs completed very fast 

compared to the first runs. SQL Server scaled 

well when increasing the scale factor. 

Execution duration increased accordingly 

within the same ratio from SF1 to SF5 and 

SF10. 

In Oracle, data was loaded with sqldr utility. 

Loading time was correlated with the scale 

factor. Memory usage was around 650 MB for 
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1 GB of raw (.csv) data which shows that 

Oracle better optimizes its in-memory 

structures. This a consequence of the 

compression Oracle applies for columnar 

storage. 

Also, by contrast to SQL Server, Oracle did 

not manifest any problem when generating the 

query execution plan. There were no major 

differences between duration of each query’s 

first and subsequent runs. Oracle has 

obviously consistent and predictable 

execution times.  

Query duration increases proportionally with 

the scale factor, from SF1 to SF5 and then 

SF10.  

However, Oracle manifested problems with 

the correlated subqueries for which execution 

time was very inconsistent. One example is 

Q20 (find suppliers in a particular nation 

having selected parts that may be candidates 

for a promotional offer) [16]. When executed 

first two runs it took 66-67 seconds, while 

further tun took 11-12 seconds. This was 

reproduced consistently, no matter how many 

times the test was repeated, even with server 

restarted.  

Of the three systems, MemSQL is the least 

optimized in terms of memory footprint. 

Loading 1 GB of raw (.csv) data required 

almost 3 GB of RAM. This loading ratio 

RAM/raw data) of 3 was recorded also for 

SF5. In the case of SF10, MemSQL could not 

load the data for Lineitem table, although the 

machine had a fairly large amount of memory 

(32GB). If the loading ratio were the same, it 

would probably have taken at least 30 GB of 

RAM to load all the data. The error thrown 

was: Error Code: 1712. Leaf Error 

(85.122.22.25:3307): Not enough memory 

available to complete the current request. The 

request was not processed. Also MemSQL 

started displaying memory error messages 

when the buffer filled up and.  

As for SQL Server, in MemSQL the 

subsequent query executions were much 

faster (for which only fetch times are 

reported). Q11 for SF5 yielded incorrect 

results and a disproportionate long execution 

time. The root cause was identified in the 

HAVING clause which used a subquery and 

could be reported as a MemSQL bug. 

When it comes to scalability, MemSQL 

performs well. Most of the queries did not 

show five-times increase in execution time 

when moving from SF1 to SF5. 

 

6 Discussion 

Analysis of the systems under scrutiny was 

performed on three axes: (1) data load, (2) 

memory usage and (3) query execution time. 

Figure 1 compares data load timings for each 

in-memory platform. 

 

 
Fig. 1. Load time comparison between 

platforms 

 

It is evident that SQL Server performed best. 

MemSQL reported also good results, as long 

as the data fitted into memory. On a 32 GB 

machine, SF 10 data could not be loaded 

because of memory exhaustion. This is a 

consequence of the MemSQL approach to in-

memory data storage. Cost would raise 

spectacularly as MemSQL offers licences per 

number of GB of RAM, and not CPU cores.  

In Oracle data loading took surprisingly long 

time. That could be explained by the fact that 

sqldr utility does not parallelize the load and 

does not use all the available CPU cores. 

External tables could prove a more viable 

solution for loading the data. 

When it comes to scalability, this is achieved 

by all the three platforms, data load duration 

being correlated with the scale factor. 

In terms of table size in memory (Figure 2), 

Oracle performs better than SQL Server and 

MemSQL. This could be explained by 

Oracle’s compressed columnar storage 

whereas the other two are using a row storage. 

As previously mentioned, MemSQL requires 

a lot more RAM for the loaded data.  
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Fig. 2. Memory footprint on each platform 

 

Moving forward to the analysis of query 

execution time, it was expected that Oracle 

would performs better for analytical queries 

(because of the columnar data format). On 

SF1 Oracle performed best for all the queries, 

except Q1, Q18 and Q21 where MemSQL 

outperforms it and also Q4 where SQL Server 

has the best performance as seen on Figure 3. 

 

 
Fig. 3. Query execution time for SF 1 

 

Moving to SF 5, MemSQL started to show its 

strength outperforming SQL Server and 

matching Oracle in most of the cases, except 

for a couple of notable cases which have 

already been discussed: Q11 where it gave 

incorrect results after a long phase of parsing, 

Q13 and Q18. Interestingly, SQL Server and 

Oracle had issues with Q1, while MemSQL 

managed to complete it a lot faster. Figure 4 

shows execution times for SF 5. 

 

 
Fig. 4. Query execution time for SF 5 

 

For SF 10, MemSQL does not appear in the 

results because the data did not fit into 

memory. The results were mixed between 

SQL Server and Oracle, as seen in Figure 5. 

 

 
Fig. 5. Query execution time for SF 10 

 

A final chart (Figure 6) combines total 

execution time for all queries and scale 

factors. Q11 was removed from the chart since 

it witnessed a MemSQL bug. Analogously, 

Q22 was removed for SQL Server on SF 5 

because the query could not be completed. 

The chart confirms that Oracle did perform 

better than SQL Server on all scale factors. On 

SF1 Oracle performed better than MemSQL. 

For SF 5 MemSQL did better, probably 

because of its latch-free in-memory structures, 

but it remained behind Oracle. One can 

speculate on what will happen on larger scale 

factors. SQL Server seems to lag the other two 

platforms. Results could prove different when 

using the most recent release, SQL Server 

2016, since in-memory feature was enhanced 

and it beneficiates from a combination 

between in-memory row and column storage.  

The chart also suggests that when scale factor 

increased, the gap between Oracle and SQL 

Server reduced, so it would be interesting to 

test larger database sizes such as 100 GB, or 

even 1TB. 

 

 
Fig. 6. Total execution time on all platforms 

and every scale factor 
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Decision about upgrading to the enterprise 

editions should consider the cost. Table 1 

displays a cost comparison between standard 

and enterprise edition (prices are in dollars). 

They do not include software update license 

and support which involve additional costs. 

 

Table 1. Enterprise vs standard edition price 

 SQL 

Server 

Oracle MemSQL 

Standard 

Edition 

$3717 

per 

core (in 

2 core 

packs) 

$17500 

per 

core 

Free 

(cannot be 

used in 

production) 

Enterprise 

Edition 

$14256 

per 

core (in 

2 core 

packs) 

$47500 $1000 per 

GB of 

RAM 

 

MemSQL does not provide a standard edition 

per se. The freely available Community 

edition is not recommended to be used in 

production environments.  

Further, the same tests were deployed for 

comparing in-memory versus on-disk storage 

for each platform. No indexes or any other 

optimization techniques were considered for 

on-disk storage tests. 

With two exceptions, all queries took less time 

to be completed on in-memory systems. 

Surprisingly, on-disk configuration performed 

better for Q1 and Q9 in SQL Server. In-

memory proved to be two  to fifteen times 

faster than on-disk, with an average of 2.63 as 

seen in Figure 7. 

 

 
Fig. 7. SQL Server in-memory vs. on disk 

performance 

 

In Oracle only Q1 was completed faster on 

disk, as Figure 8 shows. That could be 

explained by the larger number of various 

aggregate functions the query contains. 

 

 
Fig. 8. Oracle in-memory vs on disk 

performance 

 

Figure 9 presents an overall comparison of the 

query duration between in-memory and on-

disk. 

 
Fig. 9. Total time in-memory vs on disk 

 

Results show a close performance between 

Oracle and SQL Server especially in the case 

of on-disk storage. Relative to on-disk, in-

memory performance improved by a factor of 

3. 

Given the cost of Enterprise Edition for both 

technologies which is three to four times 

higher, the performance gain might not be 

feasible. 

Currently in-memory feature seems to be a 

rather immature technology and more of a 

marketing buzz. Nevertheless, it looks 

promising on the long run.  

 

7 Conclusions and Further Research  

For the OLAP workload, the 22 TPCH queries 

were tested against different scale factors 

(SF1, SF5 and SF10). Oracle, SQL Server and 
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MemSQL were the tested technologies for 

three separate scenarios: loading data, 

memory usage and execution times. For 

loading data into memory, Oracle had the 

worst performance, which requires a different 

approach such as external tables. Loading the 

data should not impact the daily business 

activities since it can be performed out of the 

office hours. Consequently, the data 

processing could beneficiate from the warm 

cache for optimal performance. 

The size of required memory for the data 

revealed that MemSQL consumes three times 

more RAM than the other two platforms, an 

effect of in-memory data structures design. 

The results of TPCH queries run revealed best 

results for Oracle. MemSQL could not be 

tested for all scale factors because SF10 data 

could not fit into memory. For the other two 

SFs it showed promising results. When 

comparing with on-disk performance, in-

memory showed a 3x performance increase 

for both Oracle and SQL Server. Since these 

are Enterprise Edition options that cost 3-4 

times more than the standard editions, 

companies should carefully evaluate benefits 

and costs before taking the decision to 

upgrade. 

For future research, in-memory distributed 

systems will be under scrutiny. Many 

products, both commercial and open source 

have emerged recently: Apache Ignite, 

Apache Spark, Geode, Greenplum, Exasol, 

Sap Hana. They address not only analytical 

workloads but bridging the gap between 

OLTP and OLAP into the new hype concept: 

HTAP. 

Also, various optimizations techniques, 

testing tools and platforms could be used, such 

as: 

 Use schema-only option for SQL Server 

which will persist data only in memory 

(not providing durability); 

 Compare current results with Oracle pin-

table option, available in the standard 

edition; 

 Use more nodes and evaluate the 

MemSQL scalability; 

 Create indexes based on predicates from 

WHERE clauses, JOIN, ORDER BY and 

GROUP BY; 

 Inspect the execution plans and verify the 

steps that have the highest costs and 

optimize them; 

 Load more data for scale factors up to 100 

GB and more; 

 Deploy the tests in Amazon cloud to 

confirm how IOPS (….) and network 

bandwidth might have an impact; 

 Use columnar storage in MemSQL and 

SQL Server which might prove more 

appropriate for analytical workloads; 

 Use SQL Server 2016 which combines in-

memory with columnar storage; 

 Test performance when increasing the 

number of concurrent users (e.g. using 

JMeter); 

 Test also OLTP workloads, such as TPC-

C. 
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