
Informatica Economică vol. 18, no. 2/2014 63

DOI: 10.12948/issn14531305/18.2.2014.07

A Multi-Agent System for the Composition of Semantic Web Services

Based on Complexity Functions and Learning Algorithms

Andrei-Horia MOGOS, Adina Magda FLOREA

Faculty of Automatic Control and Computers

University POLITEHNICA of Bucharest, Romania

andrei.mogos@cs.pub.ro, adina.florea@cs.pub.ro

Semantic web services represent an important and actual research area in computer science.

A very popular topic in this area is the composition of semantic web services, which can be

used for obtaining new semantic web services from existing ones. Based on a representation

method for the semantic descriptions of semantic web services, that we had previously pro-

posed, we propose a multi-agent system for the composition of semantic web services based

on complexity functions and learning algorithms. Our system starts as a semi-automatic com-

position system, but after it gathers (using learning algorithms) sufficient information about

the knowledge domain in which it is used, the system is able to perform compositions of se-

mantic web services automatically. Based on the previously proposed representation method,

this paper describes the structure and the main algorithms of the proposed system. The paper

also presents an example of using the proposed system and some experimental results.

Keywords: Semantic Web Service, Composition Of Semantic Web Services, Multi-Agent Sys-

tem, Complexity Functions, Learning Algorithms

Introduction

These days, semantic web services repre-

sent an important and actual research area in

computer science. One of the main topics in

this area is the composition of semantic web

services, the main goal being to obtain new

semantic web services by composing existing

ones.

In [1] the we propose the following classes of

semantic web services composition methods:

semi-automatic composition (see [2]), AI

planning (see [3][4][5]), agents and multi-

agent systems (see [6][7]), logic languages

and rules (see [8][9]), and bio-inspired meth-

ods (see [10][11]). One of the main conclu-

sions of our analysis presented in [1] is that

most of the semantic web services composi-

tion methods are automatic methods.

In [12] we propose a method for representing

the semantic description of a semantic web

service using complexity functions; for in-

formation related to complexity functions,

see, for example [13][14]. This new repre-

sentation method is presented in [12] in a

formal way, by proposing several definitions

and theorems.

In this paper we propose a multi-agent sys-

tem for the composition of semantic web ser-

vices based on the semantic descriptions rep-

resentation method proposed in [12]. At the

beginning, our method is semi-automatic,

since it gathers information about the

knowledge domain in which it is used. Later,

after several uses of the method for the same

knowledge domain, the method becomes au-

tomatic and it doesn’t ask new information

from the user. The main idea is that our

method starts by being semi-automatic,

learns the knowledge domain in which it

works by using several learning algorithms

and then it becomes automatic and doesn’t

need new information from the user for solv-

ing the semantic web services composition

problem. Consequently, given a knowledge

domain to work with, and a period of train-

ing, our method can be considered an auto-

matic composition method.

Taking into account the analysis made in [1],

we can say that our automatic method be-

longs to the class ‘agents and multi-agent

systems’. An important element of originality

of our composition method is that it uses a

new representation method for the semantic

descriptions, the one proposed in [12].

The paper is organized as follows. Section 2

presents some concepts proposed in [12] that

1

64 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

are necessary for this paper. Section 3

proposes a way to enrich the semantic

description of a semantic web service

(represented using the method proposed in

[12]). Section 4 describes the proposed multi-

agent system for the composition of semantic

web services. In Section 5 we present the

main algorithms used by our system. Section

6 contains an example of using the proposed

system. In Section 7 we present some

experimental results. Finally, Section 8

contains the conclusions of the paper.

2 Representation of the Semantic Descrip-

tion Of A Semantic Web Service

In this section we present some concepts

proposed in [12] that are necessary for under-

standing the system proposed in this paper.

2.1 Dictionary

In [12], we first consider a set of words W, in

which each word is considered to have a sin-

gle meaning for the discussed knowledge

domain. Then, we define a binary relation
s

that verifies if two words from W have the

same meaning; this relation is an equivalence

relation on W. We also consider the family of

equivalence classes determined by
s on W,

NCiiC 1)(, where NC represents the number

of equivalence classes (all the words of a

given class
iC have the same meaning). In

this way
NCiiC 1)(can be seen as a partition

of the set of words W. The family of equiva-

lence classes
NCiiC 1)(is called a dictionary.

The meaning of a word is the index of the

equivalence class to which it belongs (for the

formal definition of the meaning of a word,

see [12]).

2.2 A Method to Represent a Semantic De-

scription

In [12], we also propose a way of represent-

ing a semantic description as a complexity

function, i.e. a function **:  RNf , where
*N is the set of positive integers and *

R is

the set of positive real numbers. We will ex-

plain this representation method using an ex-

ample. First we present a version of the func-

tion “mod” called “mod
*
”[12]: “n mod

*
 NC =

n mod NC, if n mod NC  0 and n mod
*
 NC

= NC, if n mod NC = 0”. Next, we consider

the following example: we assume that the

semantic description (of a web service) ex-

pressed in words is
321 www where

321 ,, www are words from W such that

11 Cw  ,
52 Cw  ,

73 Cw  (we assume that

NC  7); then, the corresponding semantic

description expressed as a complexity func-

tion has the form: sd(n) = n + 1, if (n mod
*

NC)  {1, 5, 7} and sd(n) = 1 / (n + 1), oth-

erwise.

In addition, in [12], we propose two approx-

imations of a semantic description. We ex-

plain here these approximations using two

examples: 1) if the initial semantic descrip-

tion contains the word animal, an approxima-

tion of type 1 is a semantic description, simi-

lar with the initial one, that has the word cat

instead of the word animal (the word cat is

less general in terms of meaning than the

word animal); 2) if the initial semantic de-

scription contains the word cat, an approxi-

mation of type 2 is a semantic description,

similar with the initial one, that has the word

animal instead of the word cat (the word an-

imal is more general in terms of meaning

than the word cat).

3 Enriching the Semantics of the Semantic

Descriptions

In this section we enrich the semantics of the

semantic descriptions (represented using the

method proposed in [12]) by adding for each

semantic description the following

information: for each input value n of the

function that represents the semantic

description, we store the number of words of

the initial semantic description expressed in

words that belong to the equivalence class

NCn
C *mod

.

We define the function noApp with the

following form (see (1)):

Informatica Economică vol. 18, no. 2/2014 65

DOI: 10.12948/issn14531305/18.2.2014.07

NCn
Cclasseequivalenctheto

belongthatsdwfromwordsofnumberthensdnoApp

NNSnoApp

*mod

**

),(

:





 (1)

where by S we denoted the set of all semantic

descriptions represented as complexity

functions.

In Example 1 we show how this additional

semantic information can be used by our

system in order to extract a sub-semantic

description from a given semantic

description.

Example 1

Let be 100NC . Consider two semantic

descriptions Ssdsd 21, with the following

forms (see (2), (3)):










otherwisen

NCnn
nsd

),1/(1

}91,73,25{)mod(,1
)(

*

1
(2)










otherwisen

NCnn
nsd

),1/(1

}91,25{)mod(,1
)(

*

2
 (3)

The non-zero values of the function noApp

that we need are (see (4)):

1)91,(,1)25,(

1)91,(,1)73,(,2)25,(

22

111





sdnoAppsdnoApp

sdnoAppsdnoAppsdnoApp
 (4)

It is easy to observe that 2sd is a sub-

semantic description of 1sd . The semantic

description that result after extracting 2sd

from 1sd has the following form (see (5)):










otherwisen

NCnn
nsd

),1/(1

}73,25{)mod(,1
)(

*

3
(5)

and the non-zero values of the function

noApp are (see (6)):

1)73,(,1)25,(33  sdnoAppsdnoApp (6)

Remark 1

For practical reasons, given a semantic

description expressed as complexity function,
**:  RNsd , our system will use a

restriction of sd, defined on the set {1, 2, …,

NC}. This restriction will represent all the

information of the initial semantic

description expressed in words, and it has the

advantage that can be represented as a finite

vector of real numbers. For examples and

explanations, we will use the semantic

description sd (not the restriction of this

function).

4 Proposed System

The structure of the software system used for

generating a web service by decomposing its

semantic description is described in Figure 1

and it is composed by 8 modules: Processing

Module, Decomposition Module, Semantic

Descriptions Comparing Module, Words

Module, Semantic Descriptions

Approximation Module, Composition

Module, Semantic Web Services Module,

and Feedback Module.

4.1 Processing Module

Processing Module has a single component:

Processing Agent. This agent receives the

semantic description SD of the web service

that must be generated by the system, runs

the main algorithm, communicates with other

agents (Decomposition Agent, Semantic

Descriptions Comparing Agent, Words

Inequality Comparing Agent, Words Equality

Comparing Agent, Words Searching Agent,

Semantic Descriptions Approximating

66 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

Agent, Composition Agent, and Semantic

Web Services Searching Agent) in order to

solve the problem, and sends to the user the

complete semantic description CD (i.e. all

the information needed for using the

composed semantic web service that

corresponds to the semantic description SD).

Processing Agent has also the role of

translating a semantic description from the

form expressed in words, into the form

presented in Section 2.

During the solving process, Processing Agent

sends to the user a proposal of decomposition

of the semantic description SD. If the user

response is affirmative then Processing

Agent initiate the composition of the

semantic web services indicated by the

decomposition of SD. Otherwise, Semantic

Descriptions Dictionary is updated and the

part of the decomposition that was not

satisfactory is repaired. It is also possible that

Processing Agent to send an incomplete

decomposition to the user in the case in

which the decomposition algorithm cannot

find a solution because of a wrong

decomposition choice. In that case, the

response of the user can improve the

decomposition process.

The Processing Agent also has the following

role: if for a given semantic description

correspond several semantic web services,

then the agent asks the user which is the

correct choice in a given situation. Using the

interactions with the human user related to

this problem, the agent computes a ranking

of the semantic web services for each such

semantic description. Of course, this problem

doesn’t appear very often; consequently, the

effect over the quantity of computational

resources used by the system is negligible.

4.2 Decomposition Module
Decomposition Module has three

components: Semantic Descriptions

Dictionary, Decomposition Agent, and

Semantic Descriptions Generator Agent.

Semantic Descriptions Dictionary contains

all the semantic descriptions that have been

used, in the past, by the system, decreasingly

ordered by importance (see, Algorithm 2).

Given the semantic description SD, Semantic

Descriptions Generator Agent generates, if

asked by Decomposition Agent, semantic

descriptions using some of the words within

the semantic description SD.

Decomposition Agent must offer to

Processing Agent a decomposition of the

semantic description SD: first it searches in

the Semantic Description Dictionary

semantic descriptions that match with SD or

with parts of SD, starting with the most

trusted semantic descriptions; if, after this

process, the decomposition is not complete, it

asks Semantic Descriptions Generator Agent

to generate disjoint semantic descriptions (in

terms of similar words) using the words

provided by Decomposition Agent.

Decomposition Agent communicates with

Processing Agent in order to solve words

comparison (equality or inequality) or

semantic descriptions comparisons (equality

or inequality).

4.3 Semantic Descriptions Comparing

Module
Semantic Descriptions Comparing Module

has one component: Semantic Descriptions

Comparing Agent. This agent compares two

semantic descriptions (vectors of NC

elements) in the same way in which two

elements of the set NCR)(*


are compared. It

receives from Processing Agent the two

semantic descriptions and it sends back the

result of the comparison.

Informatica Economică vol. 18, no. 2/2014 67

DOI: 10.12948/issn14531305/18.2.2014.07

Semantic Descriptions

Generator Agent

Ontology

Processing

 Agent

Semantic Descriptions Comparing Agent

Composition Agent

Decomposition

Agent

Feedback Agent

Semantic Web Services

 Library

Words Inequality

Comparing Agent

Semantic Descriptions Approximating Agent

Semantic Descriptions Dictionary

Words

Searching Agent

Semantic Web Services

Searching Agent

Words Equality

Comparing Agent

Semantic Descriptions Dictionary

Updating Agent

SD

CD

FB

Processing

Module

Decomposition Module

Semantic Descriptions Comparing Module

Words Module

Semantic Descriptions Approximation Module

Composition Module

Semantic Web Services Module

Dec

Dictionary

Feedback Module

Fig. 1. System structure

68 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

4.4 Words Module
Words Module has 5 components:

Dictionary, Ontology, Words Inequality

Comparing Agent, Words Equality

Comparing Agent, and Words Searching

Agent. Dictionary contains the words

permitted by the system, grouped in classes

of words with the same meaning. Ontology

describes the inequality relations between the

meanings corresponding to the classes of

words from Dictionary, i.e. it provides all the

meanings pairs (1meaning , 2meaning) where

2meaning is more general than 1meaning

(the meaning of the word animal is more

general than the meaning of the word cat).

Words Inequality Comparing Agent receives

two words from Processing Agent, searches

into Ontology, and finds the inequality

relation between the two words, if such a

relation exists. Words Equality Agent

receives two words from Processing Agent,

searches into Dictionary, and verifies if the

two words belong to the same class from

Dictionary (i.e. the two words have the same

meaning). Words Searching Agent receives a

word from Processing Agent, searches into

Dictionary, and finds the corresponding class

of that word.

4.5 Semantic Descriptions Approximation

Module
Semantic Descriptions Approximation

Module has a single component: Semantic

Descriptions Approximating Agent. This

agent receives from Processing Agent a

semantic description, two indexes, and the

approximation type needed (type 1 or type 2)

and returns the approximation of that

semantic description.

4.6 Composition Module

Composition Module has a single

component: Composition Agent. This agent

receives from Processing Agent a

decomposition of the semantic description

SD, and the information necessary for

directly finding (i.e. without searching) the

semantic web services (that correspond to the

elementary semantic descriptions from the

decomposition) in Semantic Web Services

Library, makes the composition of these

semantic web services, and returns the

complete description CD of the composed

semantic web service.

4.7 Semantic Web Services Module

Semantic Web Services Module has 2

components: Semantic Web Services Library

and Semantic Web Services Searching Agent.

Semantic Web Services Library is the library

of semantic web services available to be used

by the software system. Semantic Web

Services Searching Agent has two roles: 1) it

receives from Processing Agent a semantic

description, searches into Semantic Web

Services Library for the corresponding

semantic web service, and if the service was

found, it returns the information related to

the position of the service in the library; 2) it

receives from Composition Agent a semantic

description of a semantic web service and the

information related to the position of the

semantic web service in Semantic Web

Services Library, and returns the complete

description of that service.

4.8 Feedback Module

Feedback Module has 2 components:

Feedback Agent and Semantic Descriptions

Dictionary Updating Agent. After Processing

Agent sends to the user the complete

description CD, Feedback Agent receives

from the user a feedback message FB that

contains some information related to the last

process of generating a composed semantic

web service related to the semantic

description SD. If the result was accepted by

the user, then the process of generating the

composed semantic web service stops. If the

result is not sufficiently good, then the

process continues in order to solve the

problems related to some parts of the

semantic description SD. In both cases,

Feedback Agent announces the situation to

Processing Agent. We consider that, when

the result is not sufficiently good, some parts

of the semantic description SD were not

correctly translated in terms of semantic web

services from Semantic Web Services

Library.

Informatica Economică vol. 18, no. 2/2014 69

DOI: 10.12948/issn14531305/18.2.2014.07

Semantic Descriptions Dictionary Updating

Agent receives from Feedback Agent the

feedback message FB and modifies Semantic

Descriptions Dictionary after the following

rules: 1) if an elementary semantic

description from the decomposition of SD

was accepted by the user, then the agent

searches for that description into Semantic

Descriptions Dictionary: if the description is

found then its trust coefficient is

incremented; if the description is not found

then the description is added to Semantic

Description Dictionary and an initial trust

coefficient is associated to the description; 2)

if an elementary semantic description from

the decomposition of SD was not accepted by

the user, then Semantic Descriptions

Dictionary is not modified with respect to

that semantic description.

5 Main Algorithms

This section presents the main algorithm that

describes the functionality of the system and

the algorithms that describe the learning

process of the system.

Dictionary contains words grouped by

meaning in equivalence classes, Ontology

contains the relations in terms of semantic

inequalities between the representative words

of the classes from Dictionary, and Semantic

Descriptions Dictionary contains semantic

descriptions as vectors of NC positive real

numbers (see, Remark 1). The semantic

descriptions from Semantic Descriptions

Dictionary are decreasingly ordered by the

trust coefficient (i.e. by importance).

For the algorithms we will use the following

notations:

- SD: the initial semantic description

represented in the form discussed in Remark

1

- SDD: Semantic Descriptions Dictionary

- SWSLib: Semantic Web Services Library

- SWS: the composed semantic web service

that corresponds to the semantic description

SD

5.1 The algorithm that describes the

functionality of the system

Algorithm 1 represents the main algorithm

used by the software system. In lines 3-6 the

system searches for semantic descriptions in

SDD that are included in the semantic

description SD. If the entire semantic

description SD could be represented using

such semantic descriptions, then the

decomposition process finishes. Otherwise,

in lines 7-12, the system searches for

semantic descriptions in SDD that

approximate semantic descriptions included

in SD.

If SD is still not empty, then in lines 13-30,

the system generates a decomposition of SD

and then it searches for the available

semantic descriptions in SWSLib that

matches exact or approximate the

descriptions from the decomposition. It is

possible that this part of the algorithm

behaves like an infinite loop. For this reason,

two temporal limits were added to the

algorithm: ‘limit’ and ‘finalLimit’. After this

step of the algorithm we have two possible

outcomes: 1) if SD1 is empty, then the

system created a complete decomposition of

SD; 2) if SD1 is not empty, then the system

created only a partial decomposition of SD.

In lines 31-36 the system sends the

decomposition Dec to the user. If the answer

of the user is negative then the system

applies again the decomposition steps from

lines 3-30 in order to correct the parts of Dec

that were not satisfactory. If the answer of

the user is affirmative, then, in lines 37-38,

the system creates the composed semantic

web service that corresponds to the semantic

description SD and it sends the composed

service to the user.

70 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

 1: MainAlgorithm(SemanticDescription) {

 2: SD = Words2Function(SemanticDescription)

 3: for-each SDi in SDD, from the highest to the lowest trust coefficient

 4: while (SDi is a part of SD) {

 5: extract SDi from SD

 6: add SDi to the decomposition Dec }

 7: if (SD is not empty) {

 8: for-each SDj in SDD, from the highest to the lowest trust coefficient

 9: if (SDj is an approximation of SD) {

10: add SDj to the decomposition Dec

11: SD = empty

12: break }

13: SD1 = SD

14: while ((SD1 is not empty) and (time_in_while < finalLimit)) {

15: Dec1 = generate a decomposition of SD1

16: for-each SDk in Dec1 {

17: if(SDk in SWSLib) {

18: extract SDk from Dec1

19: add SDk to the decomposition Dec }

20: if(SDk in Dec1)

21: if(SDk has an approximation in SWSLib) {

22: extract SDk from Dec1

23: add SDk to the decomposition Dec }}

24: if(Dec1 is empty)

25: SD1 = empty

26: else if(time_for_the_same_SD1 < limit)

27: SD1 = the description formed using the descriptions in Dec1

28: else {

29: SD1 = SD

30: remove from Dec all SDk put in Dec during while }

31: send Dec to user

32: while(negative answer from user) {

33: update SDD

34: run lines 3-30 for the parts of Dec that are not satisfactory

35: modify Dec

36: send Dec to user }

37: SWS = compose(Dec)

38: send SWS to user

Algorithm 1. The algorithm that describes the functionality of the system

The system learns from the interactions with

the human user. At the beginning the

Semantic Descriptions Dictionary is empty.

After several decomposition processes the

system becomes sufficiently “intelligent” to

propose decompositions with minor

problems. Once the system has a certain

experience in decomposing semantic

descriptions, it will offer high quality

decompositions, and with each mistake,

thanks to the interaction with the user, it will

perform even better.

5.2. The Algorithms that Describe the

Learning Process of the System
The learning process consists of two parts:

- learning the importance of each semantic

description that it uses, information stored in

the Semantic Descriptions Dictionary; this

process is described in Algorithm 2;

Informatica Economică vol. 18, no. 2/2014 71

DOI: 10.12948/issn14531305/18.2.2014.07

- learning the best semantic web service that

corresponds to each semantic description that

it has ever used, if there are several semantic

web services that correspond to this semantic

description; this process is described in

Algorithm 3.

Learning the importance of each semantic

description that it uses
The system is trained by a human user for

several sets of tests until it obtain a

performance superior to a given bound. This

type of learning process is can be done only

during the training period. A step of the

learning process takes place when the agent

sends the proposed decomposition of the

initial semantic description to the human user

for acceptance. In Algorithm 2, we present

this type of interaction between the system

and the human user.

1: SDDLearningAlgorithm(Dec){

2: Response = sendToHumanUser(Dec)

3: for-each SDi in Dec{

4: if(Response(SDi) = affirmative){

5: if SDi in SDD

6: increaseScoreInSDD(SDi)

7: else{

8: add(SDi, SDD)

9: initScoreInSDD(SDi)

}}}}

Algorithm 2. SDD Learning Algorithm

If the human user accepts the decomposition

Dec, then for all the components of Dec the

importance is increased in the Semantic

Descriptions Dictionary (SDD): if a

component is not in the SDD then it is added

and its score is initialized; if a component is

already in the SDD then its score is

increased. If the human rejects the

decomposition, then, for the correct

components, the importance is increased in

the Semantic Descriptions Dictionary as

specified above, and for the incorrect

components there is no change with respect

to the importance in the SDD.

Learning the best semantic web service for

a given semantic description

This type of learning process is done,

occasionally, when the system needs to

consult the human user. When the system

uses a semantic description that corresponds

to several semantic web services from the

Semantic Web Services Library (SWSLib) it

uses the following rules:

- if it never used that semantic description

before, it asks the human user about the

decision problem, initialize a ranking of

semantic web services for that semantic

description and uses the service with the

highest score in the ranking;

- if the number of times that it used that

semantic description is below a given bound

B then it asks the human user about the

decision problem, re-computes the ranking of

semantic web services for that semantic

description using the information that it

already had and the information received

from the user; then, it uses the service

indicated by the human user;

- if the number of times that it used that

semantic description is superior to B then the

system uses the service with the highest score

from the ranking of semantic web services

that corresponds to that semantic description.

In Algorithm 3, we present this type of

learning process:

 1: BestSWSLearningAlgorithm(SD){

 2: Services = SWSsForSDfromSWSLib(SD)

 3: if(card(Services) > 1){

 4: if(noTimes(SD) = 1){

 5: Response = askHumanUser(SD, Services)

 6: initRanking(SD, Services, Response)

 7: return service(Response)}

 8: else if (noTimes(SD) < B){

 9: Response = askHumanUser(SD, Services)

72 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

10: recomputeRanking(SD, Services, Response)

11: return service(Response)}

12: else if (noTimes(SD) = B)

13: return serviceWithHighestScore(SD)}

14: return firstElement(Services) }

Algorithm 3. Learning the best SWS for a given semantic description

In the next section, we present an example of

using the system proposed in this paper.

6 An Example of Using the Proposed Sys-

tem

In this section we present an example of

using the system proposed in this paper for

solving the problem of generating a web

service by decomposing its semantic

description. Starting from the “traveling

scenario” presented in [15] and from the

BravoAir service [16], we have created a

simple traveling scenario: consider that a

person wants to travel to another city and for

this reason he wants to make a flight

reservation, a car reservation, and a hotel

reservation. The initial semantic description

of a semantic web service that can

accomplish this composed task is presented

in Table 1:

Table 1. The initial semantic description expressed in words

This service offers flight reservation, car reservation, and hotel reservation

For simplicity, in this example we consider

that the semantic description contains only a

brief description of the task that the

corresponding semantic web service can

accomplish. Nevertheless, our system can

also work with full information semantic

descriptions.

Consider that we have 1000 equivalence

classes in the dictionary D. In Table 2 we

show the meaning of the words of our initial

semantic description. The initial semantic

description, expressed using complexity

functions, which corresponds to the semantic

description from Table 1 has the following

form (see (7)):










otherwisen

nn
nsd

),1/(1

}743,152,123,24{)1000mod(,1
)(

*

 (7)

The non-zero values of the noApp function,

which we need, are the following (see (8)):

3)743,(;1)152,(

;1)123,(;1)24,(





sdnoAppsdnoApp

sdnoAppsdnoApp
 (8)

Table 2. The meaning of the words of the initial semantic description

Word

Meaning

this -

service -

offers -

flight 123

reservation 743

car 24

Informatica Economică vol. 18, no. 2/2014 73

DOI: 10.12948/issn14531305/18.2.2014.07

reservation 743

and -

hotel 152

reservation 743

The Semantic Web Services Library is

presented in Table 3:

Table 3. The Semantic Web Services Library

SWS Semantic Description

SWS Name

… …

This service provides flight reservations FlightReservation1

This service provides flight reservations FlightReservation2

The service offers flight reservation FlightReservation3

… …

The service provides hotel reservation HotelReservation1

… …

This service offers car reservation CarReservation1

The service provides car reservation CarReservation2

… …

The service offers hotel car HotelCar1

… …

The service provides reservations Reservations1

… …

The three semantic web services that offer

flight reservation have the same semantic

description, which is represented in (9). The

semantic description of the semantic web

service that offers hotel reservations is

represented in (10). The two semantic web

services that offer car reservations have the

same semantic description, which is

represented in (11).










otherwisen

nn
nsd

),1/(1

}743,123{)1000mod(,1
)(

*

1 (9)










otherwisen

nn
nsd

),1/(1

}743,152{)1000mod(,1
)(

*

2 (10)










otherwisen

nn
nsd

),1/(1

}743,24{)1000mod(,1
)(

*

3 (11)

The non-zero values of the noApp function,

which we need, are the following (see (12)):

1)743,(;1)24,(

;1)743,(;1)152,(

;1)743,(;1)123,(

33

22

11







sdnoAppsdnoApp

sdnoAppsdnoApp

sdnoAppsdnoApp

(12)

74 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

We consider an intermediate case when our

system can solve without human intervention

a part of the decomposition, based of the

information that it already learned from the

human user; for the other part of the

decomposition, the human intervention is

necessary.

We consider that the Semantic Descriptions

Dictionary contains the semantic description

1sd . Also, we consider that 1sd has already

been used for several times; therefore, the

system already knows the best semantic web

service that corresponds to 1sd ; suppose that

the best service for 1sd is

FlightReservation1. The semantic description

1sd will be eliminated from sd and added to

the decomposition. The new form of sd is the

following (see (13), (14)):










otherwisen

nn
nsd

),1/(1

}743,152,24{)1000mod(,1
)(

*

 (13)

2)743,(;1)152,(;1)24,( sdnoAppsdnoAppsdnoApp (14)

In this moment, the system must generate

decomposition, because it has no useful

information related to the most probable

decomposition. Suppose that it proposes to

the user the decomposition:

5541 ,,, sdsdsdsd , where 4sd and
5sd are

presented in (14), (15), (16). We assume that

the system has found in the Semantic Web

Services Library the semantic web services

that correspond to 4sd and
5sd .










otherwisen

nn
nsd

),1/(1

}152,24{)1000mod(,1
)(

*

4 (15)










otherwisen

nn
nsd

),1/(1

743)1000mod(,1
)(

*

5 (16)

The human user rejects the decomposition

proposed by the system. Next, assume that

the new decomposition proposed by the

system is
321 ,, sdsdsd . The user accepts this

new decomposition. The system finds in the

Semantic Web Services Library the service

HotelReservation1 that corresponds to 2sd

and two semantic web services that

correspond to 3sd . Therefore, the system

must ask the human user for the best service

with respect to this semantic description;

suppose that the best choice is

CarReservation2.

The composition workflow obtained by the

system is presented in Table 4. For putting

the semantic web services of the workflow in

the correct order, the system must also

analyze the initial semantic description

expressed in words.

Table 4. The composition workflow

FlightReservation1, CarReservation2, HotelReservation1

In this example, the system needed two

human interventions. After learning

sufficient semantic information from the

human user, the system will be able to solve

this problem using only its own reasoning

capacities.

Informatica Economică vol. 18, no. 2/2014 75

DOI: 10.12948/issn14531305/18.2.2014.07

7 Experimental Results

In this section we present several

experimental results based on the example

presented in the previous section. We

consider in the set of words W only words

with reach semantics. The modified version

of the initial semantic description from Table

1 is presented in Table 5:

Table 5. The initial semantic description expressed in words (basic form)

flight reservation car reservation hotel reservation

We will call this form the basic form: this

form contains only the words with reach

semantics (i.e. words relevant for the

knowledge domain). We use the notation

SDBF for this basic form. The meanings of

the words from SDBF are presented in Table

2. The system will use the representation of a

semantic description discussed in Remark 1.

To easy the way a semantic description

expressed using complexity functions is

presented to the user, we introduce a new

way of representing a semantic description

(used only for displaying purposes): we

consider only the equivalence classes
iC

with the property from (17):

iCwthatsuchSDBFw  (17)

For each such equivalence class we use a 3-

tuple: (index, value, classNoApp), where

index is the index of the equivalence class,

value is (index + 1), and classNoApp is the

number of words from SDBF contained in

that equivalence class (for approximations of

type 1, the system sometimes uses value =

(index + 1)
2
, see for details [12]; thus, it is

not redundancy the use of (index, index + 1,

...) for an equivalence class for exact

semantic descriptions). The first element of

the description is the number of the classes

used for the description. We call this type of

description user-style semantic description.

As an example we will first present the initial

semantic description expressed using

complexity functions, as in (7) and (8):










otherwisen

nn
nsd

),1/(1

}743,152,123,24{)1000mod(,1
)(

*

3)743,(;1)152,(

;1)123,(;1)24,(





sdnoAppsdnoApp

sdnoAppsdnoApp

The corresponding user-style semantic

description is presented in Table 6:

Table 6. The user-style semantic description of SDBF

4 24 25 1 123 124 1 152 153 1 743 744 3

Our experimental results will follow the

same scenario used in the example presented

the previous section: a part of the

decomposition can be made by our system

without human intervention and another part

needs some information from the human

user; the human intervention may be

necessary for the decomposition process and

for finding the best semantic web service for

a given semantic description.

We modify the semantic web services from

the Semantic Web Services Library (see

Table 3) in order to use the basic form of a

semantic description. For this new form, see

Table 7.

76 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

Table 7. The Semantic Web Service Library (basic forms)

SWS Semantic Description

SWS Name

… …

flight reservations FlightReservation1

flight reservations FlightReservation2

flight reservation FlightReservation3

… …

hotel reservation HotelReservation1

… …

car reservation CarReservation1

car reservation CarReservation2

… …

hotel car HotelCar1

… …

reservations Reservations1

… …

In Table 8 we present some information from

SDD (Semantic Descriptions Dictionary).

The semantic descriptions are sorted

decreasingly according to the values

associated to them. The semantic

descriptions with the highest values are the

first semantic descriptions used by the

system. In other words, the value of a

semantic description represents the priority

associated to it by the system (high priority

means high value).

Table 8. Some information from SDD

Value

Semantic Description

… …

10 2 123 124 1 743 744 1

… …

5 2 152 153 1 24 25 1

… …

4 1 743 744 1

… …

3 2 24 25 1 743 744 1

… …

2 2 152 153 1 743 744 1

… …

The type of a semantic web service can be: 0

– if the match is exact, 1 – for approximation

of type 1, and 2 -for approximation of type 2.

For the given initial semantic description, the

behavior of our system is presented in Table

9:

Table 9. Experimental results

Initial SD Length: 6

flight reservation car reservation hotel reservation

The solution for the initial semantic description

Informatica Economică vol. 18, no. 2/2014 77

DOI: 10.12948/issn14531305/18.2.2014.07

SD 1: 1 743 744 1 -> type: 0

SD 2: 1 743 744 1 -> type: 0

SD 3: 2 123 124 1 743 744 1 -> type: 0

SD 4: 2 24 25 1 152 153 1 -> type: 0

Your response (1: accept / 0: reject) is:

SD 1: 0

SD 2: 0

SD 3: 1

SD 4: 0

What is the best SWS for the SD: 2 24 25 1 743 744 1 ?

The choices are the following: CarReservation1(1) CarReservation2(2)

The best choice is (1-2): 2

The solution for the initial semantic description:

SD 1: 2 123 124 1 743 744 1 -> type: 0

SD 2: 2 24 25 1 743 744 1 -> type: 0

SD 3: 2 152 153 1 743 744 1 -> type: 0

Your response (1: accept / 0: reject) is:

SD 1: 1 (already validated)

SD 2: 1

SD 3: 1

Initial SD Length: 6

flight reservation car reservation hotel reservation

The result of the composition is the following (swsName (type)):

(Type: 0 – exact matching, 1 – approx type 1, 2 – approx type 2)

FlightReservation1 (0); CarReservation2 (0); HotelReservation1 (0);

The system already had the information

related to the best semantic web service for

the semantic description: 2 123 124 1 743

744 1; for the semantic description 2 152 153

1 743 744 1 there was only one semantic web

service in the Semantic Web Service Library;

for the semantic description 2 24 25 1 743

744 1 the system found two semantic web

services in the Semantic Web Services

Library, and for this reason it asked the

human user to choose one of the two

services.

This example is focused only on exact

matching. The system is also capable of

using semantic description approximations;

this feature of the system is especially useful

when using a big number of semantic web

services and a big number of semantic

descriptions. By using semantic description

approximations, the system minimizes the

time necessary for finding a solution; we

consider that an exact solution that takes to

much time to be obtained is weaker than an

approximate solution obtained faster.

8 Conclusions

In this paper we proposed a multi-agent sys-

tem for the composition of semantic web ser-

vices. Our system uses the semantic descrip-

tions representation method proposed by use

in [12]. This design decision has an im-

portant advantage: our system represents the

semantic descriptions using numbers, while

most of the systems proposed in the literature

78 Informatica Economică vol. 18, no. 2/2014

DOI: 10.12948/issn14531305/18.2.2014.07

for the composition of semantic web services

use words for representing the semantic de-

scriptions. Thus, our system has an ad-

vantage related to the running time.

On the other hand, given a knowledge do-

main, our system can be seen initially as

semi-automatic. Then, using two learning al-

gorithms, it gathers all the information need-

ed related to that knowledge domain, and af-

ter several uses, the system can perform au-

tomatic compositions of semantic web ser-

vices. In other words, given a certain

knowledge domain, after a period of training,

our system becomes automatic.

As future work, one can test the system for

various knowledge domains, in order to see

for which types of knowledge domains the

system works better. Another future work

can be the analysis of the training period of

the system depending of the dimension of the

knowledge domain, given a certain type of

knowledge domain.

References

[1] A. H. Mogos and A. M. Florea, “Classifi-

cation and Comparison of Several Se-

mantic Web Services Composition Meth-

ods”, accepted paper to IE2014 – The

13th International Conference on Infor-

matics in Economy, Bucharest, Romania,

2014

[2] A. Gómez-Pérez, R. González-Cabero

and M. Lama, “A Framework for Design

and Composition of Semantic Web

Services”, in Proc. The First

International Semantic Web Services

Symposium, AAAI 2004, Spring

Symposium Series, California, USA,

2004

[3] Z. Liu, A. Ranganathan and A. Riabov,

“A Planning Approach for Message-

Oriented Semantic Web Service

Composition”, in Proc. The 22nd

Conference on Artificial Intelligence

(AAAI-07), vol. 2, Vancouver, British

Columbia, Canada, 2007, pp. 1389-1394

[4] H. Mcheick and A. Hannech, “Semantic

Web Services Adaptation and Composi-

tion Method”, in Proc. The Eighth Inter-

national Conference on Internet and Web

Applications and Services, Rome, Italy,

2013, pp. 45-51

[5] F. Lécué and A. Delteil, “Making the

Difference in Semantic Web Service

Composition”, in Proc. The 22nd

Conference on Artificial Intelligence

(AAAI-07), vol. 2, Vancouver, British

Columbia, Canada, 2007, pp. 1383-1388

[6] S. Kumar and R. B. Mishra, “Multi-Agent

Based Semantic Web Service

Composition Models”, Journal of

Computer Science, Infocomp, vol. 7, no.

3, pp. 42-51, 2008

[7] J. O. Gutierrez-Garcia, F. F. Ramos-

Corchado and J. L. Koning, “Obligation-

based Agent Conversations for Semantic

Web Service Composition”, in Proc. The

IEEE/WIC/ACM International Joint Con-

ference on Web Intelligence and Intelli-

gent Agent Technology, Milano, Italy,

2009, pp. 411-417

[8] S. Sohrabi, N. Prokoshyna and S. A.

McIlraith, “Web Service Composition via

the Customization of Golog Programs

with User Preferences”, Conceptual

Modeling: Foundations and Applications:

Essays in Honor of John Mylopoulos, A.

T. Borgida, V. K. Chaudhri, P. Giorgini

and E. S. Yu (eds.), Springer-Verlag,

2009, pp. 319-334

[9] S. Liu, J. Wang, X. Feng, H. Park and D.

Hyun, “Description Logic Rule Based

Semantic Web Service Composition

Method”, Journal of Computational In-

formation Systems, vol. 6, no. 8, pp.

2713-2725, 2010

[10] C. B. Pop, V. R. Chifu, I. Salomie, R. B.

Baico, M. Dinsoreanu and G. Copil, “A

Hybrid Firefly-inspired Approach for Op-

timal Semantic Web Service Composi-

tion”, Scalable Computing: Practice and

Experience, vol. 12, no. 3, pp. 363-369,

2011

[11] S. R. Dhore and M. U. Kharat, “QoS

Based Web Services Composition using

Ant Colony Optimization: Mobile Agent

Approach”, International Journal of Ad-

vanced Research in Computer and Com-

munication Engineering, vol. 1, no. 7, pp.

519-527, 2012

Informatica Economică vol. 18, no. 2/2014 79

DOI: 10.12948/issn14531305/18.2.2014.07

[12] A. H. Mogos and A. M. Florea, “A

Method to Represent the Semantic De-

scription of a Web Service Based on

Complexity Functions”, submitted paper

to UPB Scientific Bulletin, Series A: Ap-

plied Mathematics and Physics, 2013

[13] A. H. Mogos and A. M. Florea, “A

Method to Compare Two Complexity

Functions Using Complexity Classes”,

UPB Scientific Bulletin, Series A: Applied

Mathematics and Physics, vol. 72, iss. 2,

pp. 69-84, 2010

[14] C. A. Giumale. Introducere in Analiza

Algoritmilor. Teorie si Aplicatie

(Introduction to the Analysis of

Algorithms. Theory and Application).

Polirom, Bucharest, Romania, 2004, pp.

32-38

[15] R. Studer, S. Grimm and A. Abecker

(eds.), Semantic Web Services. Concepts,

Technologies, and Applications. Springer,

2007, pp. 52

[16] Bravo Air Service Example, OWL-S 1.1

Release. Internet:

http://www.daml.org/services/owl-

s/1.1/BravoAirService.owl, October 2004

[April 2014]

Andrei-Horia MOGOS, PhD, is Lecturer at the Faculty of Automatic Con-

trol and Computers of University POLITEHNICA of Bucharest. He is a

member of the Artificial Intelligence and Multi-Agent Systems Laboratory

(http://aimas.cs.pub.ro). His research interests include intelligent agents, se-

mantic web services, complexity functions, and functional programming. He

is the author of 17 research papers and 1 book, and has participated in several

R&D projects.

Adina Magda FLOREA, PhD, is Dean of Faculty of Automatic Control and

Computers of University POLITEHNICA of Bucharest and head of the Arti-

ficial Intelligence and Multi-Agent Systems Laboratory

(http://aimas.cs.pub.ro). She has as research interests intelligent agents and

agent-based computing, knowledge modeling, and ambient intelligence. Pro-

fessor Florea is the author of more than 60 research papers and 4 books, and

has coordinated several national and international R&D projects, among

which the FP7 project ERRIC: Empowering Romanian Research on Intelligent Information

Technologies.

