
152 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.14

Designing a Software Test Automation Framework

Sabina AMARICAI

1
, Radu CONSTANTINESCU

2

1
Qualitance, Bucharest

2
Department of Economic Informatics and Cybernetics

Bucharest University of Economic Studies, Romania

sabina.amaricai@qualitance.ro, radu.constantinescu@ie.ase.ro

Testing is an art and science that should ultimately lead to lower cost businesses through in-

creasing control and reducing risk. Testing specialists should thoroughly understand the sys-

tem or application from both the technical and the business perspective, and then design,

build and implement the minimum-cost, maximum-coverage validation framework. Test Au-

tomation is an important ingredient for testing large scale applications. In this paper we dis-

cuss several test automation frameworks, their advantages and disadvantages. We also pro-

pose a custom automation framework model that is suited for applications with very complex

business requirements and numerous interfaces.

Keywords: Software Testing, Test Automation, Test Automation Framework, Data Driven,

Keyword Driven, Hybrid

Introduction
Software testing has been a rapidly grow-

ing industry in the past ten years. Neverthe-

less, the domain is new so there is a lot of

room for improvement and a lot of room for

innovative ideas. A very interesting and chal-

lenging chapter of software testing is soft-

ware testing automation. This falls some-

where between software testing and software

development, using both programming con-

cepts as well as testing ones. Diving further

into software automation, one of the biggest

challenges is to keep the testing perspective

while codding, as the independence of testing

versus development is an extremely im-

portant principle.

We see a lot of improvements in Software

test automation in the past five years. As it

happens in any growing industry, there were

set a lot of trends. It usually starts with rec-

ord and play approach and evolved to a mod-

ular approach and moving towards the data-

driven and keyword driven. Of course, these

trends started a lot of debates on which de-

sign is better or more suitable for your team,

your business and your needs.

Before we start discussing test automation

design, we will define some of the most

common terms related to this topic. Software

testing is defined as “an investigation con-

ducted to provide stakeholders with infor-

mation about the quality of the product or

service under test” [3]. Therefore, the main

goals of this activity are to detect and prevent

defects as well as to insure the intended be-

havior of the tested software [5], [6], [7].

Software test automation represents the use

of software to control the execution of tests,

the comparison of actual outcomes to pre-

dicted outcomes, the setting up of test pre-

conditions, and other test control and test re-

porting functions (BS 7925-1) [1].

Test Automation Framework represents a

framework used for test automation. It pro-

vides some core functionality (e.g. logging

and reporting) and allows its testing capabili-

ties to be extended by adding new test librar-

ies [1]. “An automated test framework may

be loosely defined as a set of abstract con-

cepts, processes, procedures and environment

in which automated tests will be designed,

created and implemented. In addition, it in-

cludes the physical structures used for test

creation and implementation, as well as the

logical interactions among those compo-

nents” [2].

A test automation framework has the struc-

ture of a software application. As an applica-

tion, a test automation framework defines

common functions such as handling external

files, GUI interaction, provides templates for

test structure, and therefore developing an

1

Informatica Economică vol. 18, no. 1/2014 153

DOI: 10.12948/issn14531305/18.1.2014.14

automated solution is very similar to devel-

oping software applications [3], [7], [9], [10],

[11], [12], [13].

In any type of design of software test auto-

mation framework, in order to test an appli-

cation, we need the following:

 Test case or test flow – The definition of

a test case in automation is the same as

the test case defined by ISTQB: “A set

of input values, execution preconditions,

expected results and execution post-

conditions, developed for a particular

objective or test condition, such as to ex-

ercise a particular program path or to

verify compliance with a specific re-

quirement” [After IEEE 610]. In other

words, the test case represents the se-

quence of steps followed to test a specif-

ic functionality.

 Test script - A test script is a set of in-

structions (written using a scripting/ pro-

gramming language) that is performed

on a system under test to verify that the

system performs as expected. Test

scripts are used in automated testing.

 Test data – the input used to test – the

data used to test specific functionalities

of the application, such as user data,

search queries, expected messages in

case of invalid input, etc.

 Locators – identifiers for the application

elements such as buttons, input fields,

alerts, etc.

The difference between the various types of

test automation framework designs is usually

based on how and where the test case, test

data and locators are defined. Depending on

the layer where the three elements above

live, the automation framework implementa-

tion requires a different level of abstraction

(generalization), therefore different pro-

gramming skills for the team that develops

and maintains the framework [6], [7], [8],

[9], [10]. For example, HP QuickTestPro us-

es an object repository where the elements

are stored (the locators), IBM Rational Func-

tional Tester offers a similar object reposito-

ry or a custom API to define custom object

repository and Selenium, in case of selecting

record and play functionality, uses the loca-

tors in the test scripts [11], [12], [13].

There are a couple of test automation frame-

work types but the most common are: data –

driven, keyword – driven and hybrid. In a da-

ta – driven automation framework, the test

data is stored in external files or database. Its

biggest limitation is the fact that a test script

can only execute similar tests, therefore, new

scripts need to be developed when new test

cases have to be created. This type of frame-

work is commonly used with applications

that require testing with a large amount of

data on similar scenarios [11], [12].

A keyword – driven framework extends the

idea used by data driven frameworks. Now,

not only the test data but also the actions on

the application elements/objects are stored in

external files. This approach makes it easier

for the test engineers to create test cases

without ever touching the framework code.

The test data is still read from external files

as in data-driven testing. As Fewster and

Graham (1999) put it, keyword-driven testing

is a logical extension to data-driven testing

[1], [2], [3], [4].

Implementing a keyword driven framework

requires a lot of programming skills and a

high level of abstractization. However, creat-

ing new test cases is done easily, by teams

without any programming skills. This type of

framework fits a broader range of applica-

tions but it is usually limited only by the

technology used to implement it. Of course

the idea can be implemented using various

technologies, depending on intended use [7],

[8]. [13].

In a hybrid framework, the basic concepts of

data driven and keyword driven are com-

bined. This type of automation framework

can accommodate easier various types of ap-

plications and clients requests. It requires less

generalization, compared to the keyword

driven framework but it still allows more

flexibility than the purely data driven one [1],

[2], [3], [10].

2 Existing Test Automation Designs

Given so many automation frameworks de-

signs, one would have to choose one design

154 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.14

that better suits its needs. Before choosing

any idea of automation framework, it is very

important to define the requirements the pro-

ject has. Let’s take for example some of the

most often requirements we have encoun-

tered while implementing an automation

framework:

 Flexible and reusable automation

framework for multiple applications.

 Company’s test team has little to no pro-

gramming skills.

In this article we are going to focus on two

designs of software testing automation

frameworks that answers to the requirements

described above: PageObject design and a

custom framework developed as a new au-

tomation solution for several projects.

These days, the one of most discussed trend

in software testing automation is the

PageObject design, which is very well sup-

ported by Selenium 2.0 offering the

PageObject pattern. In PageObject design,

the objects define each application page or

section that is displayed on more than one

page (such as header, footer, etc.). Then, on

each page element (such as button, input text,

etc.) there are actions defined. The definition

of the actions can be done with the same

method as for the element definition. The test

scripts (that represent the actual test cases)

use one or more objects as shown in Figure

1.

Fig. 1. PageObject design

Let’s consider the login screen of an applica-

tion to describe the two test automation de-

signs proposed. As shown in Figure 2, the

login screen (or page) is displayed after the

user clicks on the Navigate to Login button.

The login screen contains the following ele-

ments:

- Username field – it is a field where the

user enters text (the username to access

the application) – it is identified using

css selectors by the field id - username

(the css selector will be: #username)

- Password field – it is a field where the

user enters text (the password to access

the application) – it is identified using

css selectors by the field id - password

(the css selector will be: #password)

- Login button – it is a button that submits

the login form – it is identified using css

selectors by the field id - submit (the css

selector will be: #submit)

Page Object1 (locators, actions)

Page Object2 (locators, actions)

Page Object3 (locators, actions)

Test Case (Test Script) 1

Test Case (Test Script) 2

Test Case (Test Script) 3

Test Data Files

Informatica Economică vol. 18, no. 1/2014 155

DOI: 10.12948/issn14531305/18.1.2014.14

Fig. 2. Application under test – login screen

For example, for the login test, this approach

would go like this:

1. Define login screen: LoginPage

a. Username field (input text with a

specific locator)

b. Password field (input text with a

specific locator)

c. Login button (button with a spe-

cific locator)

2. Define actions for the elements above:

a. Enter text in username field

(enterUsername (parameter:

username))

b. Enter text in password field

(enterPassword(parameter:

password))

c. Click on login button

(clickLogin(parameter:

username))

3. Define test script:

a. Navigation to login screen – ge-

neric description of a method that

performs the navigation to the

login screen – in this example –

click on Navigate to Login button

(defined in the login page object

or in a different object)

b. LoginPage.enterUsername(“user”

) - call to the action to enter text

in username with a parameter for

the username text

c. LoginPage

.enterPassword(“pass”) - call to

the action to enter text in pass-

word with a parameter for the

password text

d. LoginPage .clickLogin() - call to

the action to click on the login

button

e. Validate the message or the new

screen - generic description of a

method that performs the valida-

tion of the message displayed af-

ter login is successful or a valida-

tion that a specific element is dis-

played on the next page – such as

Logout or MyAccount.

In this design, if the page or screen changes,

the updates are required only in the page ob-

ject of the specific screen or page – on the

object definition part. In order to write the

test scripts this way, the team responsible

with test case maintenance and test suite

augmentation is required to have a low to

medium level of programming skills. Let’s

consider the parameters read from an exter-

nal file or a database. In this case, one test

script as defined above will be able to exe-

cute only similar test cases.

We consider this approach similar with the

one HP QuickTestPro implements with their

object repository.

Application under test

Button

Navigate to Login

Username (id=username)

Password (id=password)

Login

(id=submit)

LOGIN SCREEN

156 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.14

Since PageObject approach was introduced

in Selenium it became more and more popu-

lar. As any design, the PageObject one can

be implemented using almost any automation

tool on the market. We see a lot of the test

automation migrating towards this design

disregarding completely the applications

tested or the test team involved in the test au-

tomation maintenance process. Depending on

the purpose served by a specific test automa-

tion framework the PageObject design can

ease the work.

The PageObject design, compared to the

most common automation approach – start-

ing from the tool recorded tests, reduces the

code redundancy by implementing the ele-

ments and actions in the page objects. When

someone has to enter text in the username

field there is simply a call to the method that

performs this task instead of identifying the

element and defining the action each time it

is needed. Locators and page actions are

stored in a unique location, when something

changes in this area there is a single place

where updates are required. Also, tests that

call the PageObject methods and that makes

them easier to read; they can be used as doc-

umentation as well.

3 Proposed Automation Framework De-

sign

We consider PageObject automation model a

good solution if the test team who maintains

the test automation framework has medium

programming skills and there are one or two

different applications tested with this ap-

proach – having in mind the number of page

objects that need to be created for each page

or section. Also, it would be easier and much

more maintainable if the number of distinct

pages (or sections that appear on more than

one page) is relatively small (10-20).

In this context we may raise the following

questions:

 What if the quality assurance team has

little to no programming skills as we

have all seen?

 What if the company is a bank that has

more than 10 different applications (web

and otherwise) that require test automa-

tion?

 What if the company that implements e-

commerce web applications for more

than 10 different clients?

In these cases, we wouldn’t consider

PageObject design the best way to go be-

cause the number of page objects will in-

crease and the maintenance would become

difficult, the number of tests will increase

beyond maintainability and most painful,

there would be no experience in the team to

perform the maintenance and to develop new

tests. Now, depending on the test team that

would have to maintain the test automation

framework, we would consider the following

options:

1. Keep the logic and the test flows in the

test framework code and use external

files for the locators and test data.

2. Or go even bolder and use a higher level

of generalization in the code and keep

the locators, the test data and the tests

logic and flows in external files.

Both this approaches require a high level of

programming skills for the team that devel-

ops the framework but little to no program-

ming skills on the test team that maintains

the test automation framework. We are not

going to discuss at large any of the ideas

above, that being the topic of a different arti-

cle, but we would describe a bit the concept

behind those types of test automation frame-

work implementation as shown in Figure 3.

Informatica Economică vol. 18, no. 1/2014 157

DOI: 10.12948/issn14531305/18.1.2014.14

Fig. 3. Proposed automation framework design

In the second case, we would consider three

types of files:

a. Locators: file that contains the locators

of the application (split by pages, sec-

tions, to make it easier to read and

search)

b. Data: file that contains data sections: we

include here the input, asserts. Each sec-

tion has the order specific to the applica-

tion – split by reusable application sec-

tions

c. Test: file that contains tests, each test

containing calls to the data sections and

make the test flow

To make the maintenance easier, we have

implemented this approach using the se-

quence in the test and data file and asking the

locator’s files for the locators of the elements

required. In this manner, if a locator gets

deprecated or the order is not right there are

no actions required. Also, if a locator is miss-

ing and it is required by a test, there is an er-

ror logged.

Basically, the automation design proposed

contains three types of files: locators, test da-

ta and test case in a tabular format with dif-

ferent headers. Locators file is following the

convention: <section/page name, element

name, element locator, locator type, action

on the element>. In this file, the order of the

locators has no relevance what-so-ever. The

lines here can be out of order but the recom-

mendation is to keep one to make it easier to

read and use.

 Section/page name – it is a user chosen

name used to identify a part of the appli-

cation tested. This name will be used in

mapping the types of files as it is de-

scribed in details in the next paragraph.

This name should be unique.

 Element name – it is a user chosen name

used to identify an element of the page.

This is also used in the mapping of the

files but also for the users to understand

what of the page elements is defined

there. This name has to be unique per

section name.

 Element locator – is the application ele-

ment locator. This locator can be defined

based on the application DOM, if we are

talking about web applications and can

be identified using any of the available

methods: xpath selectors, css selectors,

id, name, depending on the technology

used to implement this framework de-

sign.

 Locator type – in order to make the

framework as flexible as possible, de-

pending on the technologies used to im-

plement it, it is useful (and sometimes

mandatory) to specify the type of selec-

tor used to identify the element – such as

css selector, xpath, etc

 Action on the element – defines the ac-

tion type that can be performed on the

specific element. The actions have to be

defined in the framework implementa-

tion and used as they are defined. For

example, inputText, the action that we

are going to use in the example below is

implemented to input text on an element.

This should be used for inputs or edit

boxes.

Test data file is following the convention:

<data section name, element name, test data

value>. In this file, the order of the data in

Test Script

Locator’s files Test Data files Test Case files

158 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.14

the same data section is used when executing

the test cases in the sequence of steps fol-

lowed while testing a specific functionality.

Otherwise, the sections themselves can be in

any order the user chooses.

 Data section name – it is the user chosen

name for a data section. The data section

name should follow the naming conven-

tion: section/page name (from the loca-

tors file) plus “_”, plus name to describe

the data (such as valid scenario, invalid,

etc.) as we will present in the examples

below. The section/page name is manda-

tory and the “_” and what follows is op-

tional. This naming convention is used in

the mapping of the data with the loca-

tors. This name also has to be unique.

 Element name – it is the same user cho-

sen name described in the locators. This

is also used for mapping the files.

 Test data value – it is the actual test data

as described in the beginning of the arti-

cle. It can be a text entered in an input

field or a message that is expected on the

page after an action. To keep the file

columns number the same, for the ele-

ments that don’t require data, any char-

acter or data can be used but it will be

disregarded when performing the action:

for click on buttons – there is no data re-

quired but “click” should be added in

this file to keep it consistent and easy to

read.

Test case file is following the convention:

<test name, data section name>. In this file,

the order of the data section names in the

same test name section is used when execut-

ing the test cases in the sequence of steps fol-

lowed while testing a specific functionality.

It is recommended to have also an order in

the test name sections because the test cases

will be executed in the order written in the

file.

 Test name – it is a user chosen name for

the test case. It has no link to the other

files but it has to be unique.

 Data section name – it is the same data

section name described in the test data

structure.

Fig. 4. Files mapping model for the proposed automation framework

The files are linked together as shown in

Fig.4, using the convention described above.

The test case uses the data section name to

link to the test data file. This means that

when a test is executed, each data section

mentioned in the test case will be looked up

in the test data files and the entire sequence

of steps will be executed in the order written

in the test data file for that section.

The test data files are using the section/page

name and the element name as a key to link

to the locators file. For each step of the test

data section, the elements locators and ac-

tions that have to be performed on each of

Data file

data section name element name test

data value

section/page name element name element locator

 locator type action on the element

Test Case file

test name data section name

Locators file

Informatica Economică vol. 18, no. 1/2014 159

DOI: 10.12948/issn14531305/18.1.2014.14

the elements will be looked up in the locators

file. This time, the mapping between the test

data and the locators’ files uses two keys to

allow a better flexibility. For example, in the

login and registration forms, there will be

username and password present but on dif-

ferent pages and most certain with different

locators. Using the two keys to map these

files allows the user not to worry about the

uniqueness of the element name.

As an example, for the login test, this ap-

proach would go like this:

1. Locators: (for the login section/screen :

login)

a. <login, username, #username,

css, inputText >– section name, a

name or identifier of the locator ,

locator for username, and the type

of action performed on this ele-

ment like inputText

b. <login, password, #password,

css, inputText >– section name, a

name or identifier of the locator ,

locator for password, and the type

of action performed on this ele-

ment like inputText

c. <login, login, #submit, css,

click>- section name, a name or

identifier of the locator , locator

for login button, and the type of

action performed on this element

like click

d. <login, login, #message, css, val-

idate> section name, locator for

the message that login was suc-

cessful or unsuccessful, a name or

identifier of the locator and the

type of action performed on this

element like validation

2. Data: (data section for a positive login

scenario: login_validLogin)

a. <login_validLogin, username, us-

er>– Section name, the identifier

of the element to map it with its

locator and valid username

b. <login_validLogin, password,

pass> – Section name, the identi-

fier of the element to map it with

its locator and valid password

c. <login_validLogin, login, click> -

Mention of the login button so the

action described in the locators

would be performed on the login

button

d. <login_validLogin, message,

Login was successful> - The text

that should be displayed in case of

a successful login

3. Test:

a. Navigate_loginPage - Navigation

to the login screen (is a section in

the data file that should contain

the action to click on the Navigate

to Login button)

b. login_validLogin - Call to the log-

in section described above

Test files would contain the negative tests for

login as well, by calling a different data sec-

tions. We will present a short description for

the negative tests, those test can be further

adapted to the pattern conventions we have

previously described. The data sections for

negative scenarios for login should be more

modular and split as follows:

a. invalidLoginData1: invalid username,

invalid password

b. invalidLoginData2: valid username,

invalid password

c. validateInvalidLoginMessage: vali-

date invalid login message

In this case, the negative login tests would

look like:

 TestInvalidLogin1:

a. TestInvalidLogin1, Navi-

gate_loginPage

b. TestInvalidLogin1,

invalidLoginData1

c. TestInvalidLogin1,

validateInvalidLoginMessage

 TestInvalidLogin2:

a. TestInvalidLogin2, Navi-

gate_loginPage

b. TestInvalidLogin2,

invalidLoginData2

c. TestInvalidLogin2,

validateInvalidLoginMessage

Using this type of approach, the test files and

most of the data sections are the same for any

application that uses a login with username,

160 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.14

password and clicks on a login/submit but-

ton. And, going a bit further than the com-

mon login example used throughout the arti-

cle, considering the registration form that re-

quires more information filled in, the files

won’t be very different; there will be just a

couple more lines, keeping the described

structure. The test team that creates and

maintains the tests will only interact with the

text files following a minimum set of rules,

described in the files mapping model. Of

course, this is one of the implementation ide-

as for this design. The set of files can be

mapped in various other ways, depending on

the types of files used.

4 Conclusions

Some of the most common reasons to use au-

tomation in the testing process is to execute a

set of tests much faster and avoid repeating

manual testing. Also, it makes it easier to de-

ploy frequent builds and helps increase the

confidence in the developed application.

While executing the set of automated scripts,

the test team could focus on different areas of

the application.

In order to achieve all that, one has to choose

a test automation framework to meet the

company’s needs. As we mentioned in the

beginning of the article, most of the compa-

nies now require a framework flexible and

reusable across multiple applications that re-

quires little to no programming skills from

the internal test team. To meet this needs and

make the best of it, we came up with one so-

lution that is already implemented in a couple

of companies – PageObject design that

proved to have minor disadvantages when it

came to create new test case and maintain the

existing ones due to the little to no program-

ming skills in the test team.

We also proposed a new solution that comes

really close to a keyword driven approach

that uses external files to store the test cases,

test data and the application locators. All that

the test team has to do when creating a new

test case, is defining one or multiple data sec-

tions and create a new test case section in the

test case file. If the elements are not defined

yet in the locators’ files, they have to create a

section or just the elements there as well.

We have also identified several improve-

ments points for the custom solution. As de-

scribed above, there is one action that can be

performed on an element of the page, as the

solution is now. What if there are multiple

actions that need to be performed on an ele-

ment? For example, on a button, one can per-

form actions like click the button, validate

the text displayed on the button, etc. In the

solution described above, there is a worka-

round for this example but it involves redun-

dancy in the locator’s files. The element has

to be defined twice on the same section with

different element names and different action,

but with the same element locator. To im-

prove this solution, instead of defining one

action per element, there can be defined a set

of actions. Of course, there might be the

problem of the order of the actions per-

formed: first you validate the text or click the

button? We could avoid this question by set-

ting the order of the actions in the file like it

should be performed in the application. We

intend to follow and extend those ideas in a

further article.

References

[1] P. Laukkanen, “Data-Driven and Key-

word-Driven Test Automation Frame-

works”

[2]

http://www.automatedtestinginstitute.co

m/

[3] A. M. Memon, M. E. Pollack, and M. L.

Soffa, Using a goal-driven approach to

generate test cases for GUIs. In ICSE

’99: Proceedings of the 21st international

conference on Software engineering,

pages 257–266. IEEE Computer Society

Press, 1999.

[4] M. Fewster and D. Graham, Software

Test Automation. Addison-Wesley,

1999.

[5] I. M. Iacob, R. Constantinescu, Testing:

First step towards software quality -

http://jaqm.ro/issues/volume-3,issue-

3/pdfs/iacob_constantinescu.pdf

http://jaqm.ro/issues/volume-3,issue-3/pdfs/iacob_constantinescu.pdf
http://jaqm.ro/issues/volume-3,issue-3/pdfs/iacob_constantinescu.pdf

Informatica Economică vol. 18, no. 1/2014 161

DOI: 10.12948/issn14531305/18.1.2014.14

[6] C. Kaner, J. Bach, and B. Pettichord, Les-

sons Learned in Software Testing, John

Wiley & Sons, 2002.

[7] I. Ivan, C. Boja, Practica optimizarii

aplicatiilor informatice, Editura ASE,

Bucuresti 2007, 483 pg, ISBN 978-973-

594-932-7

[8] I. Ivan, P. Pocatilu, Testarea software

orientat obiect, Editura INFOREC,

Bucuresti, 1999, 194pg, ISBN 973-

98508-0-4

[9] C. Kaner, “The Ongoing Revolution in

Software Testing,” Software Test & Per-

formance Conference, Baltimore, MD,

December 7-9, 2004

[10] M. Fewster, Software Test Automation:

Effective Use of Test Execution Tools

(Paperback)

[11] D. Graham, M. Fewster, Experiences of

Test Automation: Case Studies of Soft-

ware Test Automation

[12] L. Kanglin, Effective Software Test Au-

tomation: Developing an Automated

Software Testing Tool (Paperback)

Sabina AMARICAI is software testing consultant at Qualitance, she has re-

ceived her Master Degree in Information Security from the Faculty of Cyber-

netics, Statistics and Economic Informatics in 2011 and her Bachelor Degree

in Computer Science from University of Bucharest, Romania in 2008. She

has more than three years of developer’s experience and more than five years’

experience in software testing focusing on automation and performance test-

ing. Her fields of interest include software testing: automation and perfor-

mance and information security.

Radu CONSTANTINESCU has a background in computer science. He has

graduated the Faculty of Cybernetics, Statistics and Economic Informatics in

2003. He defended his Ph.D. in 1998, with a paper on Information Security.

He has published as author and co-author over 60 articles in journals and na-

tional and international conferences and over 10 books. His fields of interest

include information security, software testing and operating systems designs.

