
Informatica Economică vol. 18, no. 1/2014 111

DOI: 10.12948/issn14531305/18.1.2014.10

Detecting Malicious Code by Binary File Checking

Marius POPA

Department of Economic Informatics and Cybernetics

Bucharest University of Economic Studies, Romania

marius.popa@ie.ase.ro

The object, library and executable code is stored in binary files. Functionality of a binary file

is altered when its content or program source code is changed, causing undesired effects. A

direct content change is possible when the intruder knows the structural information of the

binary file. The paper describes the structural properties of the binary object files, how the

content can be controlled by a possible intruder and what the ways to identify malicious code

in such kind of files. Because the object files are inputs in linking processes, early detection of

the malicious content is crucial to avoid infection of the binary executable files.

Keywords: Malicious Code, Binary File, Malware Detection

Introduction

The term of malicious code is assigned to

any code or script in any part of a software

system, having the intent to cause undesired

effects, security breaches and system damag-

es. The malicious code gives the feature of

malware to the software system which re-

sides in. The most known forms of the mal-

wares are viruses, worms, Trojans horses,

spyware, trapdoors, adware, rootkits, mali-

cious active content and so forth.

The binary files contains non-text data en-

coded in binary form as computer files that

are stored and may be processed by a soft-

ware system that knows how to deploy, man-

age and use a such file in the computer sys-

tem or over a computer network. Usually, in

software development process, the term of

binary file is assigned to hard-disk recipient

that stores instructions in binary form which

can be executed by the central processing

unit of the computer directly. Currently, the

binary files have evolved as structure, con-

tent and their management as processes at

runtime as the hardware, software develop-

ment tools and challenges of Information and

Communications Technologies (ICT) have

advanced.

In [1], [3], [4], [5], [6], the following issues

are addresses:

 Requirements of the secure software de-

velopment process;

 Compiling and interpreting processes;

 Binary code and file formats;

 Binary and bytecode file structures;

 Disassembly process;

 Virtual machine architectures;

 Processes of secure code review;

 Techniques and tools used in reverse en-

gineering;

 Methods and techniques for a secure

program coding;

 Methods and techniques of code obfus-

cation;

The Windows executable file in the Portable

Executable (PE) format is detailed in [4]. In

[7], the specifications regarding the PE files

and object files used by Microsoft product

are presented. The object file is referred as

Common Object File Format (COFF).

Object file is produces by a compiler, assem-

bler or translator and represents the input file

of the linker. After linking, an executable or

library is generated and contain combined

parts of the object file. The content of the ob-

ject file is not directly executable, but it is a

re-locatable code. The linking process is il-

lustrated in Figure 1.

Fig. 1. The linking process

1

112 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.10

A comprehensive image of the PE file layout

is given in [7], Figure 2.

Fig. 2. Comprehensive PE structure as [7]

states

Also, [7] illustrates the COFF file layout,

Figure 3.

Fig. 3. Comprehensive COFF structure as [7]

states

The COFF file header has a length of 20

bytes and is structured in several fields as [7]

states and Table 1 highlights.

Table 1. The COFF file header structure [7]

Offset Size Field

0 2 Machine

2 2 NumberOfSections

4 4 TimeDateStamp

8 4 PointerToSymbolTable

12 4 NumberOfSymbols

16 2 SizeOfOptionalHeader

18 2 Characteristics

The COFF file header describes the envi-

ronment which the object file can be used in

and the file structure at highest level.

Each COFF section header has a length of 40

bytes and is structured in several fields as [7]

states and the Table 2 depicts.

Table 2. The COFF section header structure

[7]

Offset Size Field

0 8 Name

8 4 VirtualSize

12 4 VirtualAddress

16 4 SizeOfRawData

20 4 PointerToRawData

24 4 PointerToRelocations

28 4 PointerToLinenumbers

32 2 NumberOfRelocations

34 2 NumberOfLinenumbers

36 4 Characteristics

The object file is the output of the compiling

process. Different source code programs lead

to different contents of the object files com-

pliant with the layout requirements and con-

straints. The COFF file is the foundation of

the library and executable files.

2 The Object File Content

Let consider the following source code writ-

ten in C++ programming language.
class Employee{

 public:

 char* Name;

 int id;

 Employee(char* aName, int nr){

Informatica Economică vol. 18, no. 1/2014 113

DOI: 10.12948/issn14531305/18.1.2014.10

 this->Name = aName;

 this->id = nr;

 procData(aName, nr);

 }

 char* empName(){ return this->Name; }

 int empID() { return this->id; }

 void procData(char* sName, int snr) { }

};

void main() {

 Employee e ("Smith", 113);

 e.empID();

 e.empName();

}

The first 20 bytes represents the COFF file

header generated by Visual Studio 2010 C++
compiler in Employee.obj. The COFF

file header content is:

Fig. 4. The COFF file header content for the above example

The values of COFF file header fields are explained in Table 3.

Table 3. The COFF file header fields explained

Field Value Description

Machine 0x014C Intel 386 or later processors and compatible

processors.

NumberOfSections 0x0001 The size of section table (one section for above

example).

TimeDateStamp 0x5329ABA5 Number of seconds since January 1, 1970,

00:00 when the file was created (1395239845

seconds/16148 days/about 44 years).

PointerToSymbolTable 0x00000FE5 The offset of COFF symbol table (4069 bytes).

NumberOfSymbols 0x00000041 The number of entries in the symbol table (65

entries). Also, the string table is located by this

value.

SizeOfOptionalHeader 0x0000 It is not required for object files. Null value

means an object file.

Characteristics 0x0000 Flags to indicate the attributes of the file. No

flag for current object file.

Next structure item of the COFF file layout is

Section Headers. The number of the section

headers is given by NumberOfSections field

from COFF file header that is 1 section. Each

section header covers 40 bytes. The section

header content of the COFF considered

above is presented in below figure.

114 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.10

Fig. 5. The COFF section header content for the COFF file

The values of COFF section header fields are explained in Table 4.

Table 4. The COFF section header fields explained

Field Value Description

Name 0x2E64726563747665 An 8-byte size string: “.drectve”.

The string has no null terminator because

the length is 8 bytes.

VirtualSize 0x00000000 Set to null value because the file is an ob-

ject file.

VirtualAddress 0x00000000 The address of the first byte before apply-

ing the relocation. Set to zero for the con-

sidered object file.

SizeOfRawData 0x00000041 For object files, the field represents the

size of the section that is 65 bytes.

PointerToRawData 0x00000294 It is a file pointer to the first page of the

section. The value has to be aligned to 4-

byte boundary for best performance: 660

bytes / 4 bytes = 165.

PointerToRelocations 0x00000000 The null value means no relocation.

PointerToLinenumbers 0x00000000 The null value means there are no object

line numbers.

NumberOfRelocations 0x0000 The null value means no relocation entry

for the section.

NumberOfLinenumbers 0x0000 The null value means no line-number en-

try for the section

Characteristics 0x00100A00 The following flags are set for the object

file: IMAGE_SCN_LNK_INFO,

IMAGE_SCN_LNK_REMOVE and

IMAGE_SCN_ALIGN_1BYTES. That

means the object file contains comments

or other information (.drectve type),

the section will not become part of the

executable file, and data are align to 1-

byte boundary.

When a section has set the flag IM-

AGE_SCN_LNK_INFO and the name of

.drectve, then the section is a directive

one. The section does not appear in the ex-

ecutable file because the linker removes it af-

ter information processing. It has not reloca-

tions and line number, and it is used to pro-

vide linking options to linker.

The data for the section is located at the file

offset specified in PointerToRawData field

of the section header. The size of the data is

indicated by the SizeOfRawData field from

the section header. For the object file Em-

ployees.obj, the offset is 0x00000294,

and the size is 0x00000041. The content of

the section is depicted in Figure 6.

Informatica Economică vol. 18, no. 1/2014 115

DOI: 10.12948/issn14531305/18.1.2014.10

Fig. 6. The COFF file .drectve section content

The object file Employees.obj has no re-

location and line numbers. The relocations

specify how the section data is modified

when is placed the executable file. The line

numbers indicates the relationship with the

code.

The COFF file symbol table is places to the

offset 0x00000FE5 specified by the field

PointerToSymbolTable within the COFF file

header. The symbol table for the file Em-

ployees.obj has 65 symbols. Each sym-

bol table entry is an 18-byte long array of re-

cords. The format of a record within the

symbol table is presented in table as [7]

states.

Table 5. The COFF symbol table record

structure [7]

Offset Size Field

0 8 Name

8 4 Value

12 2 SectionNumber

14 2 Type

16 1 StorageClass

17 1 NumberOfAuxSymbols

For instance, the symbol .drectve is de-

fined in symbol table as:

Fig. 7. The symbol .drectve definition in symbol table of the COFF file

The symbol table record of .drectve is detailed in Table 6.

Table 6. The COFF symbol table entry explained

Field Value Description

Name 0x2E64726563747665 An 8-byte size string: “.drectve”.

The string has no null terminator because

the length is 8 bytes.

Value 0x00000000 The null value means that the symbol is

not assigned to section.

SectionNumber 0x0001 Identifier of the section (first section of

the object file).

Type 0x0000 The null value means that the symbol is

not a function. There is no type informa-

tion.

StorageClass 0x03 The offset of the symbol table entry

within the section. The entry represents

the section name when the field Value is

zero.

NumberOfAuxSymbols 0x02 2 symbol table entries follow the current

symbol.

116 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.10

The auxiliary symbol records keep the 18-

byte size of the symbol table entries. The

auxiliary symbols may have different formats

than the symbol table entry format.

After the COFF symbol table, the COFF

string table is stored. Based on the fields

PointerToSymbolTable and NumberOfSym-

bols, the computations give the file offset

0x00001477 where the COFF string table for

the file Employees.obj is stored. The

content of the string table for the file Em-

ployees.obj is depicted in Figure 8.

Fig. 8. The COFF string table for the file Employees.obj

The size of the string table is indicated by the

first 4 bytes that is 0x000000FD bytes (253

bytes), including the size field itself. The

string table contains null-terminated strings

that are pointed to by symbol table entries.

3 Detection Techniques of the Malicious-

ness and Security Management

Object files are binary files stored on com-

puter systems in order to get other binary

files that can be executed. Infection of the

object files can lead to getting malicious ap-

plications executed by host computers or

transmitted over the computer network.

Binary file checking inside its structure con-

tent is another level of detection of the poten-

tially malicious files.

A detection method uses safe files and mali-

cious files to identify the differences between

two groups of files. It is the foundation to

implement effective techniques in detection

of the malwares by specialized software. The

detection techniques consider the binary file

layout in order to investigate the presence of

the malicious content.

In [8], statistical analyses are performed to

get valuable information regarding how the

malicious binary files can be detected. Some

fields in object file layout can be changed to

hide the malicious behavior of the developed

application.

In COFF file header Employees.obj, de-

tection techniques aim the fields

TimeDateStamp, NumberOfSections,

PointerToSymbolTable, NumberOfSymbols

and Characteristics. In [8], statistical analy-

sis are performed to create indicators used to

classify a binary file on fields of the file lay-

out.

The value of the field TimeDateStamp is

automatically created by compiler or linker.

Its value can be changed when its place is

exactly known. A range of dates and hours is

established to identify the binary file within

the normal distribution [8]. This detection

technique can be used to establish the mali-

cious file sources like time zone, country of

origin and activity time slots.

In binary file layout, sections bound the file

content in different areas whose content has a

particular role in the executable application.

Even though there are a large number of sec-

tion types and names, the number of sections

in a non-malware file is small. The statistical

Informatica Economică vol. 18, no. 1/2014 117

DOI: 10.12948/issn14531305/18.1.2014.10

data achieved in [8] for the field

NumberOfSections can be used as a detection

technique. For the object file Employ-

ees.obj, the field value is 1, so there is a

small possibility that the object file to be a

malware, according to attribute

NumberOfSections analysis.

The fields PointerToSymbolTable and Num-

berOfSymbols are used to bound the file area

where debugging information is stored. Be-

cause the COFF debugging information is

deprecated in favour of Program Debug Da-

tabase (PDB) file, the value of field Pointer-

ToSymbolTable should be zero [8]. The val-

ues of two fields can be correlated to other

fields in order to detect the file malicious-

ness.

The field Characteristics has a flag role to

specify a combination of attributes of the bi-

nary file. There are some attribute combina-

tions indicating a possible infection of the bi-

nary file [8].

The object file Employees.obj has not

optional header.

Regarding the object section header of the

file Employees.obj, the detection tech-

niques aim the fields VirtualSize,

SizeOfRawData, NumberOfRelocations,

NumberOfLinenumbers, PointerToRawData,

PointerToRelocations, PointerToLinenum-

bers and Characteristics.

For the file Employees.obj, the Virtual-

Size is zero and SizeOfRawData is 65. As

detection technique, relation VirtualSize <

SizeOfRawData highlights a possible issue,

but the binary file is an object file, so it is

normal that VirtualSize to be zero because

the object code is not stored in memory [8].

As detection technique, the values of Num-

berOfRelocations and NumberOfLinenum-

bers are not malicious issues for the binary

file Employees.obj.

According to [8], the detection rule Pointer-

ToRawData = 0 has a high detection rate, but

also a high false positive rate. For the file

Employees.obj, PointerToRawData is a

non-null value, so it cannot be used as detec-

tion technique. The null values of Pointer-

ToRelocations and PointerToLinenumbers

are not used in maliciousness detection.

The three flags stored by the field Character-

istics in the section header of the file Em-

ployees.obj, has not a big impact in ma-

licious detection as states [8].

It is necessary to avoid that own computer

application to be classify as malware because

one or more binary files (object, libraries or

executable) contains malicious code inserted

accidentally or deliberately. Computer soft-

ware producers hold the program source code

of the software and they can perform code

review processes for a robust and viable final

software product.

BSIMM-V Project [9] proposes three levels

of code review for a better quality control of

the software product. The aim is detection

and correction of the security bugs both the

software quality and other software which

reuses parts from another. The three levels of

code review are [9]:

1. Code review is manual or automated and

the reporting is centralized – all software

projects have to be examined in terms of

code review; the code review has to be

imposed by management and the intelli-

gence extracted from review processes is

stored in a centralized repository; the

level includes the following activities

[9]:

 Create a list of the most important se-

curity bugs – the reviewer attention is

driven by the most common security

bugs; the security bugs are extracted

from public sources and the review-

er’s experience gathered from code

review, testing and actual incidents;

the list has to be tailored to organiza-

tion’s bug priorities depending on the

features of the software products de-

veloped by the organization;

 Perform ad hoc review – the code re-

view is made during the software de-

velopment life cycle before reaching

its maturity level;

 Perform manual and automated re-

view – increasing the efficiency and

consistence of the code review pro-

cess by including the static analysis in

the process; also, automation brings

additional information to the review-

118 Informatica Economică vol. 18, no. 1/2014

DOI: 10.12948/issn14531305/18.1.2014.10

ers in a shorter time;

 Enforce the code review for all soft-

ware projects – software release is

possible when the code review pro-

cess has been done and accomplishes

a minimum acceptable standard be-

fore its shipping; software products

addresses different security issues

having low-risk or high-risk features;

 Implement a centralized reporting – a

bug list repository is created to store

the details of all identified security

bugs during the code review and their

tracking; the bug repository can be

used to make summary and progress

reports, and it is an excellent source

of training curriculum;

2. Code review is made by standards en-

forcement – the rules and best practices

stated in standards must be follow during

a code review process; the standard con-

tent is the result of the best specialists

experience and interdisciplinary points

of view; the second level includes the ac-

tivities [9]:

 Enforce coding standards – coding

standard that are not followed by de-

velopers are a sufficient reason to re-

ject a software product of parts of it;

coding standards can be published as

developer guidelines or within the In-

tegrated Development Environment

(IDE);

 Assign tool mentors – one or more

experts in code review are assigned to

a development team increasing the ef-

ficiency and effectiveness of the re-

view process; tool expert provide in-

formation regarding configuration of

the review tools and how the results

have to be interpreted;

 Custom rules for automated tools –

static analysis is tailored to improve

efficiency and reduce the false posi-

tives; it is made by the assigned tool

mentors to find coding errors;

3. Automated code review with tailored

rules – reviewers have to build a tool

that find and remove the security bugs

from the entire codebase; the level aims

the following activities [9]:

 Create the tool – the results of multi-

ple analysis techniques are combined

in a single information review flow

and reporting solution; analysis tech-

niques can combine static and dynam-

ic analysis; it leads to better informed

risk mitigation decisions;

 Remove new bugs from the codebase

– when a new security bug is found,

the rule that has been used in bug

seeking is used to find the all occur-

rences in the entire codebase;

 Automate detection of the malicious

code – malicious code is found by au-

tomate code review, out-of-the-box

automation and custom rules for static

analysis;

Malware detection techniques have the fol-

lowing approaches [2]:

 Static detection – uses the syntax or

structural information to establish

whether a program or process is mali-

cious;

 Dynamic detection – uses the runtime in-

formation to determine whether a pro-

gram or process is malicious; the

runtime information aims the resources

used by and how they are used by the

process;

 Hybrid detection – combines static and

dynamic detections

Detecting malicious code stored by binary

files is a feature that must be implemented in

detection software named malware detector.

4 Conclusions

The paper describes what structural proper-

ties of the binary object files must be consid-

ered by a malware detector during the static

detection process. The most important struc-

tural parts of an object file are presented and

described together with applying of statistical

analyses the object file content.

The object file is the result of compile pro-

cess. Lack of malicious code is also assured

when the program source code is reviewed

and accomplishes the minimum coding

standards. If the program source code lacks,

then a malware detector can be used to iden-

Informatica Economică vol. 18, no. 1/2014 119

DOI: 10.12948/issn14531305/18.1.2014.10

tify the maliciousness of a process or pro-

gram stored in a binary file.

References

[1] A. Danehkar, Inject your code to a Port-

able Executable File, December 27,

2005, http://www.codeproject.com

[2] N. Idika and A. P. Mathur, A Survey of

Malware Detection Techniques, Purdue

University, February 2, 2007

[3] M. Pietrek, “An In-Depth Look into the

Win32 Portable Executable File For-

mat”, MSDN magazine,

http://msdn.microsoft.com /en-

us/magazine/cc301805.aspx

[4] M. Popa, “Binary Code Disassembly for

Reverse Engineering”, Journal of Mo-

bile, Embedded and Distributed Sys-

tems, vol. 4, nr. 4, 2012, pp. 233 – 248

[5] M. Popa, “Requirements of a Better Se-

cure Program Coding”, Informatica

Economică, vol. 16, nr. 4(64), 2012, pp.

93 – 104

[6] M. Popa, “Techniques of Program Code

Obfuscation for Secure Software”, Jour-

nal of Mobile, Embedded and Distrib-

uted Systems, vol. 3, nr. 4, 2011, pp. 205

– 219

[7] Microsoft Portable Executable and Com-

mon Object File Format Specification,

Revision 8.3, February 6, 2013

[8] J. Yonts, Attributes of Malicious Files,

SANS Institute InfoSec Reading Room,

June 30, 2012

[9] BSIMM-V Project, http://bsimm.com,

http://bsimm.com/online/ssdl/cr/

Marius POPA has graduated the Faculty of Cybernetics, Statistics and Eco-

nomic Informatics in 2002. He holds a PhD diploma in Economic Cybernet-

ics and Statistics. He joined the staff of Academy of Economic Studies,

teaching assistant in 2002. Currently, he is Associate Professor in Economic

Informatics field and branches within Department of Economic Informatics

and Cybernetics at Faculty of Cybernetics, Statistics and Economic Informat-

ics from Bucharest University of Economic Studies. He is the author and co-

author of 9 books and over 140 articles in journals and proceedings of national and interna-

tional conferences, symposiums, workshops in the fields of data quality, software quality, in-

formatics security, collaborative information systems, IT project management, software engi-

neering.

