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In this paper, we describe a tool to aid in proving theorems about random variables, 
called the moment generating function, which converts problems about probabilities and ex-
pectations into problems from calculus about function values and derivates. We show how the 
moment generating function determinates the moments and how the moments can be used to 
recover the moment generating function. Using of moment generating functions to find distri-
butions of functions of random variables is presented. A standard form of the central limit 
theorem is also stated and proved. 
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Introduction 
A generating function of a random variable 
(rv) is an expected value of a certain trans-
formation of the variable. All generating 
functions have some very important proper-
ties. The most important property is that un-
der mild conditions, the generating function 
completely determines the distribution. Often 
a random variable is shown to have a certain 
distribution by showing that the generating 
function has a certain known form. There is a 
process of recovering the distribution from a 
generating function and this is known as in-
version. The second important property is 
that the moments of the random variable can 
be determined from the derivatives of the 
generating function. This property is useful 
because often obtaining moments from the 
generating function is easier than computing 
the moments directly from their definitions. 
Another important property is that the gener-
ating function of a sum of independent ran-
dom variables is the product of the generat-
ing functions. This property is useful because 
the probability density function of a sum of 
independent variables is the convolution of 
the individual density functions, and this op-
eration is much more complicated. The last 
important property is called the continuity 
theorem and asserts that ordinary conver-
gence of a sequence of generating functions 
corresponds to convergence of the corre-
sponding distributions. Often it is easier to 
demonstrate the convergence of the generat-

ing functions than to demonstrate conver-
gence of the distributions directly. 
Why is it necessary to study the probability 
distribution? The sample observations are 
frequently expressed as numerical events that 
corresponds to the values of the random vari-
ables. Certain types of random variables oc-
curs frequently in practice, so it is useful to 
know the probability for each value of a ran-
dom variable. The probability of an observed 
sample is needed to make inferences about a 
population. 
  
Discrete and continuous distributions 
A random variable is a function X, whose 
value is uncertain and depends on some ran-
dom event. The space or range of X is the set 
S of possible values of X. A random variable 
X is said to be discrete if this set has a finite 
or countable infinite number of distinct val-
ues (i.e. can be listed as a sequence . 
). The random variable X is said to have a 
continuous distribution if all values are pos-
sible in some real interval. Often, there are 
functions that assign probabilities to all 
events in a sample space. These functions are 
called probability mass functions if the 
events are discretely distributed, or probabil-
ity density functions if the events are con-
tinuously distributed. All the possible value 
of a random variable and their associated 
probability values constitute the probability 
distribution of the random variable.  
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The discrete probability distributions are 
specified by the list of possible values and 
the probabilities attached to those values, and 
the continuous distributions are specified by 
probability density functions. The distribu-
tion of a random variable X can be also de-
scribed by the cumulative distribution func-
tion ( ) ( )xXPxFX <= . In the case of dis-
crete random variable, this is not particularly 
useful, although it does serve to unify dis-
crete and continuous variables. There are 
other ways to characterize distributions. 
Thus, the probability distributions can be also 
specified by a variety of transforms, that is, 
by functions that somehow encode the prop-
erties of the distributions into a form more 
convenient for certain kinds of probability 
calculation.  
For a discrete random variable X with a 
probability mass function )()( xXPxp ==  
we have  for all x 
and . The probability mass func-
tion or the probability density function of a 
random variable X contains all the informa-
tion that one ever need about this variable. 

1)(0 ≤≤ xp
1)( =∑ xp

  
The sequence of moments of a random 
variable 
We know that the mean )(XE=μ and vari-
ance 

of a 
random variable enter into the fundamental 
limit theorems of probability, as well as into 
all sorts of practical calculations. These im-
portant attributes of a random variable con-
tain important informations about the distri-
bution function of that variable. But the mean 
and variance do not contain all the available 
information about density function of a ran-
dom variable. 

( ) ( 2222 )()()( XEXEXEXE −=−=σ )

Besides the two numerical descriptive quanti-
ties μ  and σ  that locate the center and de-
scribe the spread of the values of a random 
variable, we define a set of numerical de-
scriptive quantities, called moments, which 
uniquely determine the probability distribu-
tion of a random variable.  

For a discrete or continuous random variable 
X, the kth moment of X is a number defined as 

, provided the defin-
ing sum or integral of the expectation con-
verges.  

,...2,1,)( == kXE k
kμ

We have a sequence of moments associated 
to a random variable X. In many cases this 
sequence determines the probability distribu-
tion of X. However, the moments of X may 
not exist. In terms of these moments, the 
mean μ  and variance of X are given sim-
ply by 

2σ

1μμ =  and . The higher 
moments have more obscure meaning as k 
grows.  

2
12

2 μμσ −=

The moments give a lot of useful information 
about the distribution of X. The knowledge of 
the first two moments of  X gives us its mean 
and variance, but a knowledge of all the mo-
ments of X determines its probability func-
tion completely. It turn out that different dis-
tributions can not have identical moments. 
That is what makes moments important.  
Therefore, it seems that it should always be 
possible to calculate the expected value or 
mean of X, μ=)(XE , the variance, 

 or higher order moments of X 
from its probability density function, or to 
calculate the distribution of, say, sum of two 
independent random variables X and Y, 
whose distributions are known. In practice, it 
turn out that these calculations are often very 
difficult. 

2)( σ=XV

 
The generating functions 
Roughly speaking, the generating functions 
transform problems about sequences into 
problems about functions. In this way we can 
use generating functions to solve all sorts of 
counting problems. 
Suppose that  is a finite or infi-
nite sequence of real numbers. The ordinary 
generating function of the sequence is the 
power series 

. In or-

der to recover the original sequence from a 
given ordinary generating function, the fol-
lowing formula holds: 

...,,, 210 aaa
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Assume that  is a finite or infinite 
sequence of real numbers. The exponential 
generating function of this sequence is the 
power series  
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For recovering the original sequence of real 
numbers from the given exponential generat-
ing function, , the following formula 
holds:  

)(zG

K,2,1,0,)0( == k
dz

Gda k

k

k  

For a random variable X taking only non-
negative integer values k, with probabilities 

, the probability generating 
function is defined as: 

 for . The 

powers of the variable z serves as placehold-
ers for the probabilities  that determine 
the distribution. We recover the probabilities 

 as coefficients in a power series expan-
sion of the probability generating function. 
Expansion of a probability generating func-
tion in a power series is just one way of ex-
tracting information about the distribution. 
Repeated differentiation inside the expecta-
tion operator gives  

( kXPpk == )

( ) ∑
∞

=

==
0

)(
k

k
k

X zpzEzG 10 ≤≤ z

kp

kp

( ) ( )== X
k

k
k zE

dz
dzG )(

( ) ( )( )kXzkXXXE −+−−= 11 K , 
whence ( ) ( ) ( )( 111)( +−−= kXXXEG k K )  
for . Thus we can recover the mo-
ment of X. An exact probability generating 
function uniquely determines a distribution 
and an approximation to the probability gen-
erating function approximately determines 
the distribution. 

K,2,1=k

The moment generating functions 
The beauty of moment generating functions 
is that they give many results with relative 
ease. Proofs using moment generating func-
tions are often much easier than showing the 

same results using density functions (or some 
other ways). 
There is a clever way of organizing all the 
moments of a random variable into one 
mathematical object. This is a function of a 
new variable t, called the moment generating 
function (mgf), which is defined by 

, provided that the expecta-
tion exists for t in some neighborhood of 0. 
In the discrete case this is equal to 

)()( tX
X eEtg =

∑ )(xpetx , and in the continuous case to 

∫ dxxfetx )( . Hence, it is be important that 

the expectation be finite for all  
for some . If the expectation does not 
exist in a neighbor of 0, we say that the mo-
ment generating function does not exist. 
Since the exponential function is positive, 

),( 00 ttt −∈
00 >t

( )tXeE  always exists, either as a real number 
or as a positive infinity. 
The moment generating functions may not be 
defined for all values of t, and some well-
known distributions do not have moment 
generating function (e.g. the Cauchy distribu-
tion).  
Observe that  is a function of t, not of 
X. The moment generating function of a ran-
dom variable packages all the moments for a 
random variable into one simple expression. 
Formally, the moment generating function is 
obtained by substituting  in the prob-
ability generating function. 

)(tg X

tez =

Note that there is a substitute for mgf which 
is defined for every distribution, the complex 
numbers version of the mgf, namely the char-
acteristic function. 
 
Fundamental properties of the moments 
generating functions 
The moment generating function has many 
useful properties in the study of random vari-
ables, but we consider only a few here. Sup-
pose that X is a random variable with the 
moment generating function . Hence-
forth we assume that  exists in some 
neighbourhood of the origin. In this case 
some useful properties can be proved. 

)(tg X

)(tg X
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1. If  is the moment generating func-
tion of a random variable X then 

)(tg X

1)0( =Xg . 
Actually, we have 

( ) ( ) 11)0( 0 === × EeEg X
X . 

2. The moments of the random variable X 
may be found by power series expansion. 
The moment generating function of a random 
variable X is the exponential generating func-
tion of its sequence of moments 

∑
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=
0 !
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k

k
k
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.  

Since the exponential function  has the 

power series 

te
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k
te , by the series expan-

sion of the function  we have the equality 

of random variables 

tXe
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k
tXe . Then 

we take the expectation of both sides and use 
the fact that the operator E commutes with 
sum to get  
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3. Calculating moments. We call  the 
moment generating function because all of 
the moments of X can be obtained by succes-
sively differentiating  and then evalu-
ating the result at 

)(tg X

)(tg X

0=t .  
The kth derivative of  evaluated at the 
point  is the k

)(tg X

0=t th moment kμ  of X, i.e. 

, where )0()(k
k g=μ 0

)( )()0( == tk

k
k tg

dt
dg . 

In this way, the moments of X may also be 
found by differentiation. We can easily see 

that ( ) == tX
k

k

k

k

eE
dt
dtg

dt
d )( =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ tX
k

k

e
dt
dE  

( )tXkeXE=  (interchange of E and differen-
tiation is valid). Therefore, we obtain 

( ) k
k

tk

k

XEtg
dt
d μ===0)( . 

In other words, the moment generating func-
tion generates all the moments of X by dif-

ferentiation. We can find the moments of X 
by calculating the moment generating func-
tion and then differentiating. Sometimes it is 
easier to get moments this way than directly. 
Together, all the moments of a distribution 
pretty much determine the distribution. 
In addition to producing the moments of X, 
the mgf is useful in identifying the distribu-
tion of X. 
4. If  exists in an interval around 0, 
then knowledge of the mgf of a rv is equiva-
lent to knowledge of its probability density 
function. This means that the mgf uniquely 
determines the probability density function. 

)(tg X

In general, the series defining  will not 
converge for all t. But in the important spe-
cial case where X is bounded (i.e. where the 
range of X is contained in a finite interval) 
we can show that the series does converges 
for all t. The distribution function is com-
pletely determined by its moments. 

)(tg X

Theorem. Suppose X is a continuous random 
variable with range contained in the real in-
terval ],[ MM− . Then the series 

∑
∞

=

=
0 !

)(
k

k
k

X k
t

tg
μ

 converges for all t to an in-

finitely differentiable function  and 
. 

)(tg X

k
k

Xg μ=)0()(

Proof: We know that . 

Then we have 

∫
−

=
M

M
X

k
k dxxfx )(μ

k
X

M

M

k
k Mdxxfx ≤≤ ∫

−

)(μ . 

Hence, for all n we have 
( ) tM

n

k

kn

k

k
k e

k
tM

k
t

≤≤ ∑∑
== 00 !!

μ .  

This inequality shows that the moment series 
converges for all t and that its sum is infi-
nitely differentiable, because it is a power se-
ries. In this way we have shown that the 
moments kμ  determine the function . 
Conversely, since , we can see 
that the function  determines the mo-
ments 

)(tg X

)0()(k
Xk g=μ

)(tg X

kμ . 
If X is a bounded rv, then we can show that 
the mgf  of  X determinates the prob-)(tg X
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ability density function  of X uniquely. 
This is important since, on occasion, manipu-
lating generating functions is simpler than 
manipulating probability density functions. 

)(xf X

5. Uniqueness theorem asserts that two ran-
dom variables with the same mgf have the 
same distribution. Let X and Y be two ran-
dom variables with moment generating func-
tions  and and with correspond-
ing distribution functions  and . 
If , then . This 
ensures that the distribution of a random 
variable can be identified by its moment gen-
erating function.  

)(tg X )(tgY

)(xFX )(yFY

)()( tgtg YX = )()( xFxF YX =

A consequence of the above theorem is that 
if all moments of a rv X exist, they character-
ize completely the mgf (since the moments 
are derivatives of the mgf in its Taylor series 
expansion) and the moments also completely 
characterize the distribution, as well as the 
cumulative distribution function, probability 
density function and probability mass func-
tion. 
When a moment generating function exists, 
there is a unique distribution corresponding 
to that moment generating function. Hence, 
there is an injective mapping between mo-
ment generating functions and probability 
distributions. This allows us to use moment 
generating functions to find distriutions of 
transformed random variables in some cases. 
This technique is most commonly used for 
linear combinations of independent random 
variables. 
6. When the mgf exists, it characterizes an 
infinite set of moments. The obvious ques-
tion that then arises is if can two different 
distributions have the same infinite set of 
moment. The answer is that, when the mgf 
exists in a neighborhood around 0, the infi-
nite sequence of moments does uniquely de-
termine the distribution. This knowledge al-
lows us to determine the limiting distribution 
of a sequence of random variable by examin-
ing the associated moment generating func-
tions. 
Theorem. Suppose is a sequence 
of random variables, each having mgf  

and 

,..., 21 XX
)(tg

nX

)()(lim tgtg XXn n
=

∞→
 is finite for all t in a 

neighborhood of 0. Then there is a unique 
cumulative distribution function  
whose moments are determined by , 
and we have 

)(xFX

)(tg X

)()(lim xFxF XXn n
=

∞→
 whenever x 

is a continuity point of . Thus, conver-
gence of moment generating functions to a 
moment generating function in a neighbor-
hood around 0 implies convergence of the as-
sociated cumulative distribution functions. 

XF

7. Sums of independent random variables. 
Moment generating functions are useful in 
establishing distributions of sums of inde-
pendent random variables. 
i) If baXY += , where a and b are two real 
constants, then we have . )()( atgetg X

bt
Y =

We have ( ) ( )atXbttbaX
Y eeEeEtg == + )()(  

( ) )(atgeeEe X
btatXbt == . 

ii) The function which generates central mo-
ments of a random variable with mean μ  is 
given by . )()( tgetg X

t
X

μ
μ

−
− =

This result is understood by considering the 
following identity: ( ) == −

−
tX

X eEtg )()( μ
μ  

( ) )(tgeeEe X
tXtt μμ −− = .  

iii) If X and Y are two independent random 
variables with probability density functions 

 and  and with corresponding 
moment generating functions  and 

, then their sum 

)(xf X )(yfY

)(tg X

)(tgY YX +  has the mgf 
)()()( tgtgtg YXYX =+ . 

Actually, we have ( ) == +
+

)()( YXt
YX eEtg  

( ) ( ) )()( tgtgeEeE YX
tYtX = , because X and Y 

being independent, so are also  and . tXe tYe
Note that this is a very useful property of 
mgf’s, but the above formula would not be of 
any use if we did not know that the mgf de-
termines the probability distribution. 
Using this result it is also possible to obtain, 
in a very simple way, the mgf of a finite se-
quence of independent identically distributed 
random variables. At this point, the mgf’s 
may seem to be a panacea when it comes to 
calculating the distribution of sums of inde-
pendent identically distributed random vari-
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ables. Sometimes we cannot write down the 
distribution in closed form but, because there 
are many numerical methods for inverting 
transforms, we can calculate probabilities 
from a mgf.  
8. There are various reasons for studying 
moment generating functions, and one of 
them is that they can be used to prove the 
central limit theorem.  
Central limit theorem. Let  be a 
sequence of independent identically distrib-
uted random variables, each having mean 

,..., 21 XX

μ  
and variance . If 2σ nn XXXS +++= L21  

and 
n
nS

Z n
n σ

μ−
= , then  has a limiting 

distribution as . 

nZ

)1,0(N ∞→n
Proof: Let ,μ−= ii XY for . In this 
case the variables  are independent 
identically distributed and we have 

,...2,1=i
,..., 21 YY

μμ nXXnS nn −++=− L1

nYYY +++= L21 . We know that 

. Then 
we can write 
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Now we use the power series expansion 
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Here ⎟
⎠
⎞

⎜
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n
o 1  denotes a function  such 

that 
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nh  as . We deduce that 0→n
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Z etg
n

→  as  and this is precisely 
the mgf of a variable . Thus, we have 
proved that the distribution of  converges 
to the standard normal distribution as 

∞→n
)1,0(N

nZ
)1,0(N

∞→n . 
Corollary: If we consider the sample mean 
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n
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The theorem can be generalised to independ-
ent random variables having different means 
and variances. 
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