
Informatica Economică vol. 29, no. 2/2025 5

Exploring Conversational Programming through the CHOP Paradigm and
Artificial Intelligence

Alin ZAMFIROIU, Costinela-Beatrice PĂȘTINICĂ,

Cătălin CRĂCIUN, Claudia CIUTACU, Theodor LUCA
Bucharest University of Economic Studies

alin.zamfiroiu@csie.ase.ro, pastinicacostinela22@stud.ase.ro, craciuncatalin20@stud.ase.ro,
ciutacuclaudia20@stud.ase.ro, theodorluca12@gmail.com

Chat-Oriented Programming (CHOP) is an emerging conceptual approach to programming,
focused on the interaction between programmers and conversational interfaces based on
artificial intelligence (AI). Unlike the traditional paradigm, centered on writing code directly,
CHOP proposes a software development model in which application components are built,
modified, and analyzed through natural dialogues with AI agents. The goal of this paradigm is
to reduce technical barriers and transform the programming process into a collaborative,
conversational, and more accessible act. The paper explores techniques for automatic code
generation assisted by artificial intelligence, highlighting a series of tools and platforms
relevant to the Chat-Oriented Programming (CHOP) paradigm. It also analyzes the benefits of
this approach in optimizing the software development process.
Keywords: Chat, Programming, CHOP, AI code, Software development
DOI: 10.24818/issn14531305/29.2.2025.01

Introduction
Chat-Oriented Programming (CHOP) is a

conceptual approach to programming that
focuses on the interaction of programmers
with chat-based interfaces and artificial
intelligence (AI) agents. CHOP aims to shift
the programming paradigm from a traditional
code-centric approach to one that involves
verbal interactions between the programmer
and the artificial intelligence agent being
used.
CHOP allows programmers to interact with in
a chat environment in natural or pre-defined
language. Allowing for a simpler and easier
way to program or control software
applications, the system interprets these inputs
and executes the respective actions.
According to [1] the programming has more
phases or more paradigms regarding to the
source of the information for the
programmers, Figure 1:
• BOOP (Book Oriented Programming)

refers to the phase in which programmers
relied on books to improve their
programming techniques and expand their
knowledge. This period corresponds to a
time when the internet was not yet well
developed and, making books the primary

source of information - though obtaining
them was often difficult.

• GOOP (Google Oriented Programming) is
the phase represented by the programmers
that have used the Google Search Engine
to find code examples or solutions to
problems during the programming
process. This phase starts with the rise of
the internet, as information previously
found in books became accessible online.

• SOOP (Stack Overflow Oriented
Programming) is represented by the phase
when the Stack Overflow platform
became widely used for solving various
coding issues. In this phase, programmers
search the platform to check if others have
encountered the same problem and
whether solutions have already been
provided. This approach helps save time
by avoiding the need to browse multiple
forums or official documentation sites.

• CHOP (Chat Oriented Programming)
represents the actual phase in which the
programmers use artificial intelligence
and chat-based agents to assist with
coding tasks. When a programmer
encounters a problem, he asks the AI agent
for help, and the agent quickly searches

1

6 Informatica Economică vol. 29, no. 2/2025

for relevant information and solutions.
This approach saves time by reducing the
need to search through Stack Overflow or

any other platforms, as it was common in
previous phases.

Fig. 1. Evolution of programming paradigms [1]

In this way, the programming paradigm
continues to evolve based on the technologies
programmers use for assistance. These
paradigms are applicable regardless of the
programming language being used.

2 Background on AI code generation
As AI-driven code generation has advanced
over the years, it continues to keep up with the
changes in its general technology. In the
beginning, machine learning systems only
relied on provided templates and checklists
without being able to offer much help. Later,
AI systems began learning patterns and
allowed features such as intelligent
autocompletion and bug finding to coexist.
The introduction of deep learning and neural
networks allowed AI to create entire code
snippets, as well as restructure complicated
programs and provide optimized suggestions
based on previously learned data. The
integration of cloud services provided a new
level of collaboration and computational
power that improves development using AI.
With the rise of AI models like ChatGPT,
chatbots have become much more advanced.
Now, they can interpret, generate, and
improve code in real time, making them more
like interactive learning partners rather than
just basic assistants [2].

The roots of AI in code generation trace back
to early computational models, notably The
Logic Theorist, created in 1956 by Allen
Newell, Herbert Simon and Cliff Shaw, was
one of the first examples of artificial
intelligence (AI) and an early step toward AI-
powered code generation. It was designed to
mimic how people solve problems and could
prove mathematical theorems from “Principia
Mathematica”, an important book on logic.
According to a study by [3], this unique
program demonstrated how machines were
able to think for themselves, and served as the
foundation for future writing and coding AI
tools.
Another tool that was important for the
development of AI was called Eliza. Eliza was
one of the first AI programs to use natural
language processing (NLP), a technology that
forms the foundation of modern AI chatbots
and virtual assistants, Figure 2. The program
functioned by detecting key words in user
input and generating responses based on
predefined patterns. This made it appear as
though ELIZA could understand emotions
and engage in meaningful conversations.
However, its responses were based purely on
syntax rather than true comprehension, Eliza
followed structured rules rather than actually
understanding language or context [4].

Informatica Economică vol. 29, no. 2/2025 7

Fig. 2. General chatbot structure

Despite the promising beginnings, the
evolution of AI came to a halt for the first time
due to two major factors, referred to as the
First AI Winter (1970-1980) and Second AI
Winter (1980 - 1990). This emerged when the
early attempts at AI were continuously failing
to solve any real-life problems. This cycle of
funding AI systems was put on hold,
especially after the Lighthill Report AI review
came out in 1973. [5]. Afterwards, interest in
AI systems was notable in the 1980’s due to
the introduction of expert systems, which
turned out to be overpriced and inadequate. As
a result, confidence in AI declined, research
funding dried up, and many AI companies
went bankrupt.
In the 1990s, researchers began to see that
new algorithms could help build deeper neural
networks to handle tougher problems. One
key development was the Long Short-Term
Memory (LSTM) network, which solved the
problem of vanishing gradients and allowed
computers to better understand sequences of
data. Then, in 2012, a major breakthrough
occurred when scientists Krizhevsky,
Sutskever and Hinton combined huge datasets

(like ImageNet) with powerful GPUs. This
combination greatly improved the ability of
deep neural networks to classify images, a
milestone marked by the success of AlexNet.
Although many see this as the start of the deep
learning era, these achievements were built on
decades of earlier work in algorithm
development.
The history of AI code generation is a
chronicle of dramatic developments that have
fundamentally altered the processes of
software creation. Microsoft launched
IntelliCode as part of Visual Studio in 2018,
an AI-powered coding tool which advanced
productivity by giving context-sensitive code
suggestions during the development process.
The tremendous change came with large scale
language models that were trained over huge
code repositories. OpenAI's Codex
demonstrated the ability to formulate code
across multiple programming languages using
a descriptive statement in plain English. This
was a giant step in AI-driven coding. It led to
the development of tools such as GitHub
Copilot, which would suggest snippets of
code and automatically complete the code

8 Informatica Economică vol. 29, no. 2/2025

within widely used programming platforms,
radically simplifying programming work.
Subsequently, there were other tools that
automatically generated codes using advanced
logic. Tabnine, originally known as Codota,
went live in 2013 and now offers AI powered
code filling services for different
programming languages and development
environments. The use of AI in coding was
further cemented by DeepMind’s invention
AlphaCode in 2022 that competed in
programming competitions and displayed
incredible skills, earning an estimated rank
within the top 54% of participants, according
to [6].
The leaps from elementary code filling
functions to Chat-Oriented Programming
(CHOP) and Bot-Assisted Task Orchestrating
(BATON) demonstrate how AI assisted
development has evolved over the years.
CHOP allows interactive coding where
developers talk with the AI in real time to
create and modify code. This approach
supports collaboration and simplifies coding
procedures. BATON is an evolution from
CHOP which encompasses sophisticated AI
features such as not only assisting in code
writing, but executing a wide range of
complex development tasks including setting
up basic project features, automating testing,
managing dependencies, and even application
deployment. This is similar to an oversaw
intelligent project manager who does not only
assist you with tasks, but also guides you
through the process. Implementing BATON
in workflows significantly improves
efficiency for development teams and relieves
them from dealing with ordinary tasks.

3 Tools and platforms Supporting CHOP
Artificial intelligence has significantly
reshaped software development practices,
giving rise to new paradigms such as Chat-
Oriented Programming (CHOP). Central to
CHOP is the continuous, conversational
interaction between programmers and
intelligent assistants, enabling developers to
tackle coding tasks more efficiently, obtain
instant feedback, and mitigate cognitive strain
through direct, context-rich exchanges.

Prominent tools like ChatGPT, Gemini,
DeepSeek, Sourcegraph Cody, and GitHub
Copilot each offer unique functionalities
tailored to streamline and enrich the
programming experience in diverse
environments.
ChatGPT, developed by OpenAI, has gained
attention for its ability to interpret natural
language prompts and generate coherent
responses, making it useful in various
programming-related tasks. It can produce
relevant code examples, help debug common
programming errors, and explain technical
concepts in accessible terms, which
particularly benefits beginners and students
new to coding. Padilla et al. (2023) observed
that using ChatGPT in higher education
contexts significantly supports students by
breaking down complex programming topics
into understandable explanations, thereby
enhancing the learning process and helping
students build stronger programming
foundations [7]. Nevertheless, studies caution
users to carefully review the generated
outputs, as ChatGPT may occasionally
produce code with minor inaccuracies or
suboptimal solutions. Therefore, when
incorporating ChatGPT into educational or
professional workflows, users should
critically assess its suggestions and use them
primarily as a complementary resource rather
than relying exclusively on its
recommendations.
Google’s Gemini, a recent development by
DeepMind, has quickly become an important
tool for programmers seeking practical
assistance from AI. Designed to integrate
seamlessly with Google's ecosystem, Gemini
enhances developers' access to a wide range of
programming resources, making it
particularly user-friendly. Siam et al. (2024)
compared Gemini to other AI assistants and
found that it excels in tasks requiring careful
reasoning and step-by-step logic, performing
slightly better than ChatGPT in complex,
structured programming scenarios [8].
Additionally, Gemini is offered in multiple
versions to accommodate different project
needs, ranging from basic coding assistance
suitable for everyday tasks to more powerful

Informatica Economică vol. 29, no. 2/2025 9

models capable of handling demanding
computational problems. This flexibility
allows users to choose the appropriate level of
support according to the complexity of their
work.
DeepSeek approaches the idea of AI-
supported programming differently,
emphasizing structured reasoning and robust
problem-solving capabilities. Instead of
simply offering code suggestions or
completing simple tasks, DeepSeek is
specifically tailored for complex scenarios,
such as intricate algorithmic challenges often
found in competitive programming. By
utilizing reinforcement learning techniques
combined with internal self-verification
processes, it systematically breaks down
difficult problems into manageable steps,
refining its solutions iteratively and
methodically [9]. This step-by-step reasoning
process makes DeepSeek especially valuable
in educational contexts, where students must
learn not just how to produce code but also
how to develop and refine their logical
thinking and algorithmic problem-solving
skills. In these settings, DeepSeek acts less as
a mere code-generating tool and more as a
strategic partner that helps learners
understand and internalize complex concepts
through clearly structured reasoning.
In contrast to DeepSeek’s algorithm-centric
approach, Sourcegraph Cody is designed to
support developers by integrating deeply with
their existing project environments. Cody
excels in providing context-aware assistance,
quickly retrieving precise code snippets,
documentation, or relevant information
directly from extensive internal project
repositories. Instead of general coding advice,
Cody’s strength lies in rapidly navigating
large, complex codebases, reducing the
mental effort typically associated with manual
code searches or exhaustive documentation
reviews. Stray et al. (2023) note that Cody’s
approach significantly streamlines the
onboarding experience for new developers in
large teams, enabling them to quickly grasp
the project's structure and coding conventions
through immediate and accurate access to the
relevant code and documentation [10]. By

serving as a bridge between individual
developer queries and organizational
knowledge, Cody contributes directly to
improving team collaboration, knowledge
sharing, and overall project efficiency,
effectively complementing tools such as
DeepSeek by handling the contextual and
practical demands of professional software
development.
GitHub Copilot, a collaborative effort by
GitHub and OpenAI, introduced a practical
and widely adopted solution for integrating AI
directly into the coding process. Integrated
seamlessly within popular coding
environments, Copilot actively assists
developers by offering immediate code
suggestions as they type, effectively
automating routine coding tasks. According to
research conducted by Imai (2022),
developers who regularly utilize Copilot
report substantial improvements in their
productivity and notably reduced mental
fatigue, as the tool efficiently handles
repetitive coding patterns and boilerplate code
generation [11]. Despite these clear benefits,
the same study urges caution, emphasizing
that code produced by Copilot is not always
optimal and may sometimes include insecure
or inefficient coding practices. Thus, while
Copilot enhances efficiency, developers are
advised to thoroughly review and verify AI-
generated code before incorporating it into
critical parts of their projects.
Beyond these technical benefits, the use of AI-
based tools like Copilot and ChatGPT also
impacts developers psychologically,
influencing their productivity and overall
experience in software development. Recent
studies, such as those by [12], highlight that
developers using AI assistants generally
experience lower cognitive strain, allowing
them to allocate more mental resources to
solving complex, creative problems rather
than getting bogged down by tedious,
repetitive coding tasks [13]. Similarly, in
educational contexts, incorporating tools like
ChatGPT into programming curricula has
been shown to reduce anxiety and stress
among students who find programming
concepts challenging. By providing

10 Informatica Economică vol. 29, no. 2/2025

continuous, approachable guidance, these
tools help students develop greater confidence
in their coding abilities and achieve better
educational outcomes.
Nevertheless, the integration of such tools into
both academic and professional settings is not
without concerns. The paper [14] highlights
significant ethical challenges arising from the
misuse of AI coding assistants, particularly
regarding plagiarism and academic
dishonesty. Their experimental findings
indicate that while AI-assisted coding
significantly accelerates task completion, it
complicates traditional plagiarism detection
methods because AI-generated solutions are
often unique, making them difficult to identify
through conventional means. Consequently,
they strongly advocate for establishing clear,
explicit institutional guidelines and

developing specialized tools to detect AI-
assisted plagiarism effectively, thus
safeguarding academic integrity and
promoting responsible use of AI technologies
within educational institutions.
The integration of CHOP tools into software
development workflows has introduced
noticeable changes in how pair programming
is practiced. Traditionally, pair programming
involves two developers working closely
together, sharing responsibilities and
exchanging ideas in real time. When an
intelligent assistant becomes part of this
dynamic, the structure of collaboration shifts.
Rather than substituting the second human
partner, the AI tends to take on a support
role—offering suggestions, debugging
guidance, or even proposing alternative
implementations when a challenge arises.

Table 1. CHOP tools overview

Tool Use Case Strength Caution

ChatGPT explaining the code,
learning or debugging

interpretive and
educational

needs careful code
review

Gemini structured programming good at logical step-
by-step problems

performance varies by
model size

DeepSeek algorithmic reasoning
and problem-solving

structured, iterative
reasoning

limited general coding
support

Cody large codebase projects contextual assistance narrow use case:
integrated repositories
only

GitHub
Copilot

daily development
productivity

instant code
suggestions

may introduce bugs if
unreviewed

However, the same research also observed
certain disruptions. Frequent AI suggestions
may inadvertently reduce communication
between human collaborators, especially if
one developer begins to rely more heavily on
the AI assistant. In other instances, the flow of
the session may be interrupted by AI inputs
that do not align with the pair’s ongoing logic
or task progression. For AI to support rather
than displace interpersonal collaboration,
clear integration strategies are required - ones

that define how and when suggestions are
incorporated and ensure that the exchange of
human ideas remains central to the process.
Across the platforms discussed, Table 1:
ChatGPT, Gemini, DeepSeek, Cody, and
GitHub Copilot, a shared pattern emerges:
each tool addresses specific challenges found
in different stages or styles of programming.
For individual developers, these tools provide
immediate assistance, reduce time spent on
routine implementation, and serve as a

Informatica Economică vol. 29, no. 2/2025 11

valuable checkpoint when exploring
unfamiliar concepts. In large development
teams, context-aware systems like Cody offer
faster onboarding and improve navigation
through complex codebases, helping
developers locate and interpret existing
functionality more effectively. In educational
settings, tools like ChatGPT and DeepSeek
support deeper engagement with fundamental
programming principles by enabling students
to ask follow-up questions, test hypotheses,
and receive structured feedback tailored to
their understanding.
Rather than being viewed as interchangeable,
these tools contribute best when deployed in
alignment with the context in which they are
used. While some may excel at language-
specific implementation or algorithmic
breakdowns, others are more effective in
managing large-scale architecture or
facilitating code comprehension. Used
responsibly, with appropriate oversight and
critical thinking, these systems enhance rather
than replace the creative and analytical roles
of developers and learners alike.
The use of CHOP tools suggests a shift in how
knowledge is accessed, how tasks are
distributed within development environments,
and how learning evolves. Instead of
positioning these assistants as autonomous
agents, their value becomes clear when seen
as collaborators—extensions of the
programmer’s reasoning process. Their
integration, when guided by clear practices
and ethical considerations, reinforces the
strengths of human judgment while easing the
burdens of routine or repetitive work.

4 Using CHOP for learning programming
concepts
Learning programming has become much
easier with Chat-Oriented Programming
(CHOP). In the past, programmers had to rely
on books to understand important concepts.
Later, they searched for answers online using
forums like StackOverflow or different
documentations. However, with the rise of AI
tools such as ChatGPT, Gemini, Claude,
GitHub Copilot, Grok and Deepseek, the way
we learn programming has changed

significantly.
Nowadays, when you attempt to learn about
programming, you no longer need to invest
much time browsing various websites and
documents. You can request AI to provide you
with clear and comprehensive responses in
just a few seconds. It adapts to your needs and
will provide personalized responses if a topic
is too difficult or you need a more detailed
clarification. This allows for easier learning of
the necessary programming paradigms such
as data structures, algorithms, and object-
oriented programming (OOP). By asking
follow-up questions gives you a significant
advantage as you can continually seek
assistance from an expert across various
subjects. The AI tool is capable of serving as
a teacher upon your request and it can create
diagrams to facilitate your understanding.
Consequently, programming education has
become increasingly interactive, tailored, and
effective like never before.
CHOP can be easily used to learn the
fundamentals of programming, including
concepts like Object-Oriented Programming
(OOP), data structures, design patterns,
memory management, and different
algorithms.
A significant benefit of CHOP in learning
OOP is its capacity to quickly create examples
in various programming languages. If a
student is studying Java, Python, or C++, they
can easily request an AI chatbot to explain the
same OOP concept (such as inheritance or
polymorphism) in various languages,
allowing them to understand how syntax,
structure, and memory management vary
among languages.
In languages such as Java and Kotlin, memory
management is automatic due to garbage
collection, making object handling easier. On
the other hand, C++ requires developers to
manually allocate and free memory, requiring
a more comprehensive grasp of memory
management. CHOP assists students in
recognizing these distinctions explicitly,
enhancing their understanding of high-level
and low-level memory management in object-
oriented programming.
This flexible learning approach helps students

12 Informatica Economică vol. 29, no. 2/2025

grasp not just the theory behind OOP but also
how it’s used in industries that interest them.
By incorporating comparisons across multiple
programming languages and real-world
scenarios, CHOP strengthens both conceptual
understanding and practical skills, making
OOP more accessible and engaging.
CHOP also has a significant impact on
learning data structures and algorithms. It can
provide real-time visualizations, such as
diagrams, making the overall experience more
appealing and easier to understand by the user.
Instead of relying on pure theory, learners can
see how different data structures, such as
linked lists, look and observe how sorting
algorithms operate step by step, making the
complex concepts look more intuitive. The
same benefits also apply here because we can
see how different data structures look in more
programming languages. We can see how
divergent they are, such as with built-in data
structures in some languages (e.g. Java) and
none in others (e.g. C) which require you to
implement them by yourself. As students
explore these differences, they learn to
navigate data structures in a manner that is
informed by performance tradeoffs and best
practices.
As for algorithms, AI is tremendously useful
here, since it helps determine what
algorithms to use. It helps us understand the
differences between algorithms that perform
the same task (such as sorting algorithms),
analyze their complexity, and when we should
use algorithms in accordance with the
necessity.
Security is another important area where
CHOP helps learners stay updated with the
latest technologies and algorithms. For
example, some encryption methods used
today will no longer be secure when quantum
computing becomes more advanced. This
means new solutions will be needed to keep
data safe. CHOP allows learners to keep up
with these changes, explore new
cryptographic methods, and choose the best
and most secure options for the future.
AI models have significantly transformed
how students learn programming. Unlike
traditional education methods, which usually

follow a more standard and rigid structure, AI
technologies can easily adapt to satisfy the
user requests, making the overall experience
feel more flexible and learner centered. These
tools can provide personalized guidance to
students, adapting to their learning pace and
addressing their specific challenges. AI
assistants are highly beneficial for learning
because they can help debug code, provide
real time feedback, customize exercises and
can make the experience interactive. They
also have a positive impact on student mental
health, because they can reduce frustration
and boost confidence and engagement in
programming tasks. Since AI is available
24/7, learners can seek help any time, making
the programming education more accessible
and supportive.
Unlike traditional learning environments
where students had to wait for scheduled
classes or seek help from teachers, AI
assistants are available at any time, without
limitations. Whether it’s late at night or during
a study session on a weekend, the learner no
longer must wait for anyone to assist him in
clearing their doubts. AI-driven tools allow
instant access to explanations, debugging
assistance, and coding guidance whenever
needed, making programming education more
independent and self-paced.
CHOP introduces a more engaging way to
learn programming by integrating
gamification elements into the learning
process. You can play different games with AI
to better understand certain concepts. You can
engage in Q&A sessions, ask it to provide
code examples to find bugs, request algorithm
optimizations, or test newly learned concepts
through progressive challenges. This
approach is beneficial because practicing
syntax and logic in this way helps learners
build confidence and develop a strong, in-
depth understanding of the concepts.
CHOP helps students learn on their own and
works like a teaching assistant, giving
explanations and clearing up doubts about
programming. AI tools like ChatGPT are
great at explaining basic programming
concepts, making them useful for learning.
However, research shows that while AI can

Informatica Economică vol. 29, no. 2/2025 13

explain simple topics well, it has trouble
helping with more complex problems and
adapting to each student’s learning needs [15].
This means that CHOP is a great tool for
learning the basics, but human teachers are
still needed for solving harder problems and
debugging code.
According to [15], while CHOP is a powerful
tool for learning programming, it still has
limitations in adaptability and
personalization. AI can provide accurate
explanations, but it cannot fully understand
how students think or offer customized
responses for unique problems.
CHOP is an extremely effective resource for
learning programming, enhancing the process
to be more interactive, accessible, and
enjoyable. It helps students by providing
immediate feedback, clarifications and
custom exercises to help them gather essential
concepts. However, there is still room for
improvement especially when it comes to
adapting to individual learning styles and
handling more complex coding challenges. As
AI continues to evolve, enhancing CHOP’s
ability to provide more tailored support and
deeper problem-solving guidance will make it
an even more powerful learning tool.

5 Advantages and Challenges of CHOP
Working with CHOP changes the way you
approach code, not dramatically, but gradually,
almost imperceptibly at first. You stop
switching between tabs, you ask fewer questions
on forums, and you reach for documentation
less often. Instead, you start writing directly to a
chatbot. Sometimes out of curiosity, other times
because it’s simply faster. And most of the time,
it works well enough to keep going.
The clearest benefit is how much time you save
on small, repetitive tasks. If you forget the
syntax for a function, or can’t recall how a
specific library is imported, you no longer need
to dig through documentation. You just ask. It
keeps the momentum going, especially when
you're in the middle of building something. That
fluidity makes a big difference. It’s especially
useful when you're learning. Concepts that used
to feel abstract, like pointers, inheritance, or
recursion, become easier to grasp when
explained in plain language, backed up by

examples in different programming languages.
You can ask the same question in three different
ways, and you'll get an answer each time. That
kind of persistence used to be a luxury. Now it’s
the default. In teams, CHOP plays a different
role. It helps new developers understand
unfamiliar codebases faster. Tools like Copilot
or Cody can explain how a function works, or
where a particular class is used. You still need
to think, but you don’t need to feel lost. That’s
no small thing in a large codebase.
Still, there are limits. The biggest one is that not
everything generated by AI is correct. In fact,
the more complex your question, the more likely
it is that something will be off, an assumption, a
missing detail, a function that looks right but
doesn’t actually do what it claims. The answers
are confident, even when they’re wrong. And if
you trust them without checking, you’re likely
to run into problems you can’t trace easily.
There’s also the risk of leaning too hard on it.
When you’re used to getting help instantly, you
start skipping the part where you’d usually try
to figure it out yourself. That makes things faster
in the short term, but slower in the long run,
especially when the AI is unavailable, or wrong,
or simply doesn’t understand what you're really
asking.
In education, it gets more complicated. It’s hard
to tell how much of a student’s code was
actually written by them. The tools don’t
plagiarize in the traditional sense, but they do
blur the line between help and substitution.
That’s not necessarily a flaw, but it raises real
questions about learning, authorship, and what
we actually mean when we say “understanding
code.” CHOP isn’t good or bad on its own. It
depends entirely on how it’s used. When it’s
part of your process, not the whole process, it
can be a powerful tool. But if it replaces
thinking, or turns into a shortcut you rely on too
heavily, it does more harm than good.

6 Use Case: The Role of AI in Software
Product Development - Deepfake generator
Technological advancement has changed the
usual paradigm of all aspects of our lives,
surpassing the status of a technical tool and
establishing itself as an increasingly active
partner in the educational process. In
particular, conversational models such as
ChatGPT, Claude, Copilot, and Cody attract

14 Informatica Economică vol. 29, no. 2/2025

attention not only through their algorithmic
performance but through their ability to
directly support learning processes through
interaction, conceptual clarification, and
assistance in solving complex problems.
These models can become useful tools
between technological complexity and the
human need for contextual and practical
understanding.
This chapter will analyze such an interaction,
conducted within academic research
dedicated to digital security and the deepfake
phenomenon. At the center of this endeavor
was the need to understand and adapt an
existing application, available on GitHub, to
support a scientific presentation on the impact
of emerging technologies on identity and
safety in the digital space. The dialogue with
ChatGPT was essential in the process of
understanding the source code, identifying the
internal mechanisms of the application, and
configuring new functionalities that would
reflect the research objectives.
The analyzed application, DeepFaceLab,
represents one of the most used open-source
platforms for generating deepfake content. Its
structure is organized around three essential
processes: extracting faces from video
materials, training a neural network model to
learn facial features, and finally, conversion,
overlaying a learned face onto target video
content. Although efficient in demonstrating
the visual substitution process, the original
architecture of the application does not allow
the generation of completely new content, but
only the modification of an existing one.
Starting from this functional limitation, the
objective was to reconfigure the application so
that it could generate synthetic, realistic,
animated faces, without needing a source
video clip in which to replace a pre-existing
face. This adaptation involved not only
modifying code segments, but also integrating
another machine learning model with a
fundamentally different architecture: GAN-
type generative networks (Generative
Adversarial Networks), capable of creating
original content based on a preprocessed
dataset.
In this process of functional reconversion,

interaction with ChatGPT offered essential
support in several stages. The first consisted
of understanding the structure of the
application, identifying relevant files, and
clarifying the role of each script. Files such as
scripts/extract.py, scripts/train.py, and
scripts/convert.py were analyzed in detail to
determine how they could be modified so that
the application would no longer function
exclusively as a replacement system, but
would allow the generation of completely new
images. The explanations were precise, and
the code recommendations were accompanied
by technical justifications, which facilitated
understanding the internal logic of the
application. Subsequently, the integration of
the StyleGAN3 model, developed by
NVIDIA, a high-performance generative
model optimized for facial analysis, was
proposed. ChatGPT provided details about
how to configure this model, about its
computational requirements, and about the
exact steps to convert a set of images extracted
from videos into a format compatible with
training the GAN. The interventions also
covered aspects of image optimization,
resizing to 1024x1024 pixels, and formatting
the dataset according to the specific
requirements of the model.
An aspect that contributed to understanding
and restructuring the application was the
support in understanding the conceptual
differences between autoencoder networks,
used standardly in DeepFaceLab, and
generative networks. While the former are
built to map one image to another through
reconstructional learning, the latter are
capable of creating completely new content
without faithfully reproducing a previous
example. This difference was explained in a
concise and practical way, through concrete
code examples and by describing the dual
architecture of GANs (generator and
discriminator).
After integrating the StyleGAN3 model and
training it on a relevant dataset, the next stage
consisted of animating the generated faces to
simulate natural expressions and movements.
For this purpose, the First Order Motion
Model was also introduced into the project,

Informatica Economică vol. 29, no. 2/2025 15

which allows the transfer of facial movement
from a source video to a static image, thus
generating animated, realistic, and convincing
video content. Again, the technical stages
were explained specifically: downloading the
model, configuring input files, and running
generation scripts.
The entire journey was structured not only
according to technical needs, but also in
relation to the didactic purpose of the project.
Explanations were offered based on the
individual learning rhythm, and
recommendations were adapted to the level of
complexity necessary at each stage. In this
way, the conversational model did not act as a
solution generator, but as a technical
consultation partner, which supported
understanding the algorithmic logic, the
relationships between components, and the
ethical implications of the technology used.
This learning experience using AI models
highlights the real potential of conversational
models to support complex technical
processes, without replacing critical thinking
or cognitive effort, but positioning themselves
at the intersection between tool and partner.
The interaction with ChatGPT facilitated not
only the understanding of advanced
programming and artificial intelligence
concepts, but also the structuring of a coherent
technological approach, integrated into an
academic framework. Without claiming an
exclusive role in the formation process, this
type of assistance opens new perspectives on
how learning can be approached in the digital
age, more flexible, more contextualized, and
closer to the real needs of applied research and
adapted to the level and needs of users.

7 Conclusions
Chat-Oriented Programming (CHOP)
represents a natural evolution of the way
developers interact with technology, marking
the transition from traditional programming
approaches to conversational models,
supported by artificial intelligence. By using
tools such as ChatGPT, Copilot, Gemini or
DeepSeek, the software development process
becomes more accessible, efficient and
adaptable, both in educational contexts and in

industry. CHOP significantly contributes to
reducing technical barriers, providing real-
time contextual support and facilitating
interactive learning of complex concepts such
as object-oriented programming, data
structures or fundamental algorithms.
However, the integration of this paradigm also
brings important challenges, especially in
terms of the accuracy of the generated code,
the risks of over-dependence and the ethical
dilemmas related to originality and academic
evaluation. For CHOP to reach its full
potential, it is essential to formulate clear
usage guidelines, along with a continuous
development of AI models to make them more
reliable, more customizable and more
transparent. In conclusion, CHOP should not
be seen as a substitute for human thinking, but
as a conversational partner that can amplify
creativity, efficiency, and learning in the field
of programming.

References
[1] A Kukic, (2024, July 27) ChatOriented

Programming (CHOP) in action,
Available online:
https://sourcegraph.com/blog/chat-
oriented-programming-in-action,
Accessed: 09.02.2025

[2] F. Khennouche, Y.Elmir, N.Djebari,
Y.Himeur, A.Amira, “Revolutionizing
Customer Interactions: Insights and
Challenges in Deploying ChatGPT and
Generative Chatbots for FAQs”, 2023,
pp.2, DOI:
https://arxiv.org/abs/2311.09976

[3] L. Gugerty, “Newell and Simon's Logic
Theorist: Historical Background and
Impact on Cognitive Modeling”, Clemson
University, 2017, pp.2-3, DOI:
10.1177/154193120605000904, accessed:
15.03.2025

[4] C. Bassett, “The computational
therapeutic: exploring Weizenbaum’s
ELIZA as a history of the present”, 2018,
pp.805-806, DOI:
https://doi.org/10.1007/s00146-018-0825-
9, accessed: 15.03.2025

[5] Z. Krdzic, “AI Winter: The Reality Behind
Artificial Intelligence History”, 2024,

https://sourcegraph.com/blog/chat-oriented-programming-in-action
https://sourcegraph.com/blog/chat-oriented-programming-in-action
https://arxiv.org/abs/2311.09976
https://arxiv.org/abs/2311.09976
https://arxiv.org/abs/2311.09976
https://doi.org/10.1007/s00146-018-0825-9
https://doi.org/10.1007/s00146-018-0825-9
https://doi.org/10.1007/s00146-018-0825-9
https://doi.org/10.1007/s00146-018-0825-9

16 Informatica Economică vol. 29, no. 2/2025

available online: https://aibc.world/learn-
crypto-hub/ai-winter-history/, accessed:
15.03.2025.

[6] The AlphaCode team, “Competitive
programming with AlphaCode”, 2022,
available online:
https://deepmind.google/discover/blog/co
mpetitive-programming-with-alphacode/,
accessed: 16.03.2025

[7] J. R. C. Padilla, M. D. L. Montefalcon, and
A. A. Hernandez, “Language AI in
Programming: A Case Study of ChatGPT
in Higher Education Using Natural
Language Processing,” in Proceedings of
the International Conference on Signal
Processing and Communications
(ICSPC), 2023, accessed: 12.03.2025.

[8] Md K. Siam, H. Gu, and J. Q. Cheng,
“Programming with AI: Evaluating
ChatGPT, Gemini, AlphaCode, and
GitHub Copilot for Programmers,” in
Proceedings of the 7th International
Conference on Computational
Applications (ICCA), 2024, accessed:
12.03.2025.

[9] DeepSeek AI, “DeepSeek-R1: First-
Generation Reasoning Model,” GitHub
Repository, 2024. Available online:
https://github.com/deepseek-
ai/DeepSeek-R1, accessed: 14.03.2025

[10] V. Stray, N. B. Moe, N. Ganeshan, and S.
Kobbenes, “Generative AI and Developer
Workflows: How GitHub Copilot and
ChatGPT Influence Solo and Pair
Programming,” in Proceedings of the 57th

Hawaii International Conference on
System Sciences (HICSS), 2024, accessed:
14.03.2025.

[11] S. Imai, “Is GitHub Copilot a Substitute
for Human Pair-Programming? An
Empirical Study,” in Proceedings of the
44th International Conference on
Software Engineering (ICSE C[20] SAP
LeanIX, “History of AI”.

[12] Grimskär, H., & Johansson, N. (2024).
AI Code Generation: Trust & Risk
Awareness Across Educational Levels.

[13] M. Valovy and A. Buchalcevova, “The
Psychological Effects of AI-Assisted
Programming on Students and
Professionals,” Preprint, Prague
University of Economics and Business,
November 2023, accessed: 12.03.2025.

[13] Karnalim, O., Sujadi, S. F., & Nathasya,
R. A. (2024, March). Automated Code
Readability Feedback on Student
Awareness. In International Conference
on Smart Technologies & Education (pp.
56-66). Cham: Springer Nature
Switzerland.

[15] Z. Ahmed, S. S. Shanto, A. I. Jony,
(2024) Potentiality of generative AI tools
in higher education: Evaluating
ChatGPT's viability as a teaching assistant
for introductory programming courses,
STEM Education, Volume 4, Issue 3, 165–
182. Available online:
https://doi.org/10.3934/steme.2024011,
Accessed: 16.03.2025

Alin ZAMFIROIU has graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 2009. In 2011 he has graduated the Economic
Informatics Master program organized by the Academy of Economic Studies
of Bucharest and in 2014 he finished his PhD research in Economic
Informatics at the Academy of Economic Studies. He works as a Senior
Researcher at “National Institute for Research & Development in Informatics,
Bucharest”. He has published as author and co-author of journal articles and

scientific presentations at conferences.

https://aibc.world/learn-crypto-hub/ai-winter-history/
https://aibc.world/learn-crypto-hub/ai-winter-history/
https://aibc.world/learn-crypto-hub/ai-winter-history/
https://deepmind.google/discover/blog/competitive-programming-with-alphacode/
https://deepmind.google/discover/blog/competitive-programming-with-alphacode/
https://deepmind.google/discover/blog/competitive-programming-with-alphacode/
https://deepmind.google/discover/blog/competitive-programming-with-alphacode/
https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1
https://github.com/deepseek-ai/DeepSeek-R1

Informatica Economică vol. 29, no. 2/2025 17

Costinela-Beatrice PĂȘTINICĂ is currently pursuing a bachelor’s degree in
Economic Informatics at the Faculty of Economic Cybernetics, Statistics, and
Informatics (Class of 2025), at the Bucharest University of Economic Studies.
Her research focuses on the crossroads of artificial intelligence, digital
transformation, and geopolitics. She has presented interdisciplinary papers at
academic conferences, with recent work centered on ethical deepfake
detection, combining machine learning with critical insights on power,

identity, and digital trust.

Claudia CIUTACU is a graduate of the Faculty of Cybernetics, Statistics, and
Economic Informatics (class of 2023) and is currently pursuing a master’s
degree in IT&C Security at the Bucharest University of Economic Studies.
Passionate about mobile technology and cybersecurity, she works as an
Android developer where she combines her technical expertise with creative
problem-solving to build innovative applications.

Cătălin Ionuț CRĂCIUN has graduated the Faculty of Cybernetics, Statistics,
and Economic Informatics in 2023 and is currently pursuing a master’s degree
in IT&C Security at the Bucharest University of Economic Studies. With a
strong focus on mobile innovation and secure app development, he works as a
mobile developer, contributing to the creation of reliable and intuitive mobile
solutions that meet modern user needs.

Theodor LUCA has graduated from the Faculty of Cybernetics, Statistics, and Economic
Informatics at the Bucharest University of Economic Studies in 2024. Interested in the digital
transformation of processes, he focuses on integrating modern technologies into complex
workflows. His research also extends to transdisciplinary areas such as e-Learning and cost
optimization of digital infrastructures.

