
Informatica Economică vol. 25, no. 4/2021 53

Mobile Security Risks Overview

Ioan ADĂSCĂLIȚEI

Bucharest University of Economic Studies

ioan.adascalitei@ie.ase.ro

Engineers give careful consideration to programming configuration so they give us a smooth

and advantageous experience. Individuals readily introduce versatile applications and provide

individual data, yet infrequently stop to think about the protection suggestions. As versatile

application designers we should be comfortable with conceivable security hazards that a

transportable application may confront. Realizing potential dangers makes it simpler to keep

up a strategic distance from potential entanglements and compose increasingly secure

applications. This paper presents the most important mobile security risks and proposes several

counter-measures.

Keywords: Mobile Vulnerabilities, Code Vulnerabilities, Security Risks, OWASP

DOI: 10.24818/issn14531305/25.4.2021.06

ntroduction

Cell phones have gotten more mainstream

than work areas and workstations.

Additionally, to the actual fact that they're

anything but difficult to convey, however

innovative headways have likewise

empowered them to perform almost

comparable capacities as work areas do. As

indicated by Techjury.net, through the span of

the foremost recent one-year, portable clients

have expanded by quite 10 percent and almost

51 percent of the time spent by clients online

within the USA is on cell phones [1]. Clients

take part in pretty much all activities on

mobile phones, straightforwardly from review

the news to perusing messages, messaging,

purchasing things on the net, and doing bank

trades. Through these applications,

associations can gather usable information,

for instance, the region, use bits of knowledge,

signal, inclinations, loathes, and other

significant estimations about clients, which

might help associations with picking careful

decisions to enliven their organizations. Inside

the occasion that the information in these

phones enters improper hands, it will in

general be disastrous to the client. Thusly, the

prerequisite for flexible application security

has gotten unavoidable. Flexible application

security will be an action to defend

applications from external risks like malware

and other modernized fakes that hurt

fundamental individual and cash related

information from software engineers.

Compact application security has gotten

likewise critical during this current day and

age. An entrance in versatile security can't

simply give software engineers admittance to

the client's own special life logically yet

moreover uncover data like their current

region, banking information, individual

information, and altogether more.

OWASP mobile top 10 security risks

OWASP-(Open Web Application Security

Project) is a web network of security

authorities that have made uninhibitedly

accessible learning materials, documentation

and instruments to help work with ensuring

web and versatile applications. Among others

they need to arrange a rundown of 10 most

regular dangers to portable applications.

NowSecure [2] tried applications on the

Google Play store and Apple store and

discovered that 85% of applications damage at

any rate one top 10 hazard. Of these

applications half have shaky information

stockpiling and nearly an identical number of

applications utilize unreliable

correspondence.

I

54 Informatica Economică vol. 25, no. 4/2021

Fig. 1. OWASP TOP 10 Security Risks [2]

MSR1 Improper platform usage

Inability to utilize stage security controls or

misuse of a platform feature:

• Android intents

• Misuse of TouchID

• Misuse the Keychain

• Platform permissions

• Misuse of other security controls

Example: on Citrix app you could bypass

login through TouchID

It was found, that it had been conceivable to

sidestep Touch ID for Citrix Worx

applications by [3]:

1. Reboot the iPhone

2. Open Citrix Worx app (any app from

them)

3. Start authentication, and then cancel it

when the TocuhID popup appear

4. Close the application and open it again

and you were connected in the app

The issue looked as if it would be that the

mystery that was recovered by passing Touch

ID was put away mistakenly. Henceforth the

application expected that the client was

effectively confirmed when the confirmation

procedure was dropped and application

restarted.

MSR2 Insecure data storage

Spreads uncertain information stockpiling and

unintended information spillage.

Might include:

• insufficient file data protection (ex.

NSFileProtectionComplete vs

NSFileProtectionNone)

• wrong keychain accessibility option, (ex.

kSecAttrAccessibleAlways vs.

kSecAttrAccessibleWhenUnlocked)

• access to protection assets when utilizing

this information inaccurately.

Example: Tinder issue

Tinder presented a part that indicated

individuals signed on near you. Issue: the

precise area of every individual nearby was

sent to the gadget. First fix was to provide

separation just, however it had been

conceivable to parody the world and to utilize

triangulation. The next fix was to send this

information without accuracy [4]. To show

how awful the found vulnerability was an

Informatica Economică vol. 25, no. 4/2021 55

application was made by clients to point out tinder clients with accurate area.

Fig. 2. Web page that made it possible to track down Tinder users

MSR3 Insecure communication

Can include:

• HTTP instead of HTTPS

• incorrect SSL versions

• cleartext communication of sensitive

assets

• poor handshaking/weak negotiation (ex.

lack of certificate pinning)

Example: Misafe smart watches

Communication was not encrypted and not

effectively confirmed.

According to [6], attackers could:

• make an incognito single direction sound

call, keeping an eye on the child

• receive real-time GPS coordinates of the

kids’ watches

• retrieve a photograph of the kid, in

addition to their name, gender, weight,

date of birth and stature

• send sound messages to the youngster on

the watch, bypassing the endorsed guest

list

• call the kid on their watch.

MSR4 Insecure authentication

Issues verifying the end client or awful

meeting administration.

Might include:

• weaknesses in session management

• neglecting to recognize the client at all

when that ought to be required

• inability to keep up the client's personality

when it is required

Example: Grab Android app [7]

The security analyst had the option to sidestep

2FA (two factor authentication) by using brute

force on the four-digit code. There was no

limitation of how often a 4-digit code could be

entered.

Issue: access account with data on rides,

installment techniques, orders.

MSR5 Insufficient cryptography

Cryptography was endeavored, however

inadequate somehow or another. For instance,

designers may have utilized an obsolete

cryptographic calculation or composed a

custom helpless calculation.

Example: Ola app

Appknox filtered the Ola application and

located significant shortcomings in how

cryptographic keys were utilized. They found

that the cryptographic key utilized was

"PRODKEYPRODKEY12". An identical key

was likewise accustomed to scramble

passwords which suggests that clients'

different records where they were reusing

passwords may be in peril too. The specialists

had the choice to capture demands between

the applying and also the server, counterfeit

solicitation for cash and find the cash [8].

56 Informatica Economică vol. 25, no. 4/2021

MSR6 Insecure authorization

Can include:

• failures in authorization (e.g., forced

browsing, authorization decisions in the

client side, etc.)

• able to execute over-privileged

functionality

Example: Viper smart start

A security specialist found that the Viper

savvy start neglected to accurately approve

clients. After you check in to the server it

absolutely was conceivable to vary the id

number of the vehicle and obtain entrance

additionally to other things in the vehicles

area. It absolutely was additionally

conceivable to vary information about the

vehicle and open the vehicle remotely [9].

MSR7 Client code quality

Catch-all code-level execution issues in the

mobile customer.

Might include:

• format string vulnerabilities

• buffer overflows

• many other mistakes regarding the code

where the answer is to rewrite some code

that’s running on the mobile device.

Example: WhatsApp

WhatsApp engineers found that it had been

conceivable to form a cushion flood by

sending an uncommonly created arrangement

of parcels to WhatsApp when making a call.

For this to figure the decision should not be

replied and therefore the foe can run self-

assertive code. It was found that the weakness

was utilized to introduce spyware on the

device. This service was sold by the Israeli

organization NSO Group [10].

MSR8 Code tampering

Might include:

• local resource modification

• binary patching

• dynamic memory modification

• method hooking and swizzling

Example: Pokémon GO

Fans discovered the appliance, took care of

wrong geolocation information and time to get

uncommon Pokémon and make eggs bring

about quicker. A site was made that

demonstrated the realm of every Pokémon on

a guide, which changed the sport elements a

substantial amount. This hack probably won't

appear as perilous as the ones above yet it or

how Niantic took care of it despite everything

cost the organization notoriety and clients.

MSR9 Reverse engineering

Might incorporate investigation of the binary

file to decide its

• libraries

• source code

• algorithms and assets

Reverse engineering makes it easy to abuse all

kinds of vulnerabilities within the application.

It can uncover multiple data about backend

servers, cryptographic constants and figures,

and licensed innovation.

Example: Many of the examples above used

reverse engineering

MSR10 Extraneous functionality

It can include hidden backdoor functionality

or other inside improvement security controls

not expected for production environment. For

example, Wifi File Transfer App opens port

on Android gadget to permit associations from

the PC.

Expected use: move records, photographs,

anything put away on SD card.

Issue: there was no validation like a secret

key, anybody could associate with the gadget

and have full access.

Ways of early security risks detection

Basically, there are variety of tools and

platforms for Static Code Analysis. However,

this text aims to introduce a number of them,

which are utilized in Android programming as

follows:

Programming Mistake Detector (PMD)

PMD may be an open-source code

examination apparatus. It observes normal

programming defects like unused factors, void

catch blocks, superfluous article creation, etc.

PMD incorporates worked in rules, and

supports the adaptability to record down

custom standards besides. It upholds type of

dialects especially Java. Also, it includes

Informatica Economică vol. 25, no. 4/2021 57

CPD, the copy-paste-detector. In a word, CPD

finds duplicated code in some languages like

Java. the whole features of PMD tool are

mentioned as below:

• Possible bugs: Empty switch blocks and

try, catch, finally.

• Dead code: All variables, parameters and

functions that are left without being used

anymore.

• If and while statements left without

conditions

• Complicated expressions

• If statements that are useless in for loops

that might be while loops.

• Code that is sub-optimal: Incorrect usage

for String and StringBuffer classes.

• Classes which have a high level of

cyclomatic complexity.

• Code which is duplicated: Copy-paste

code can also mean copied-pasted bugs,

and reduces maintainability.

SpotBugs (a fork of FindBugs)

FindBugs is a static code analysis tool,

available at https://spotbugs.github.io/, which

is also open source, apparatus that examines

Java byte-code, and can detect a large number

of bugs and issues in an early phase. Some of

them are:

• Empty test cases classes.

• Block of codes that are empty need to be

deleted

• Synchronize and null check on the same

field.

• Class which doesn’t proper define some

methods like equals() without hashCode().

• Objects created without being used.

• Inconsistent method names.

• Impossible downcast.

• Fields should be package protected.

• Repeated conditional tests.

FindBugs as an open-source project means

that it is available for anyone to contribute or

screen the advancement of the ASCII text

record on GitHub.

In the findbugs-exclude.xml record, we can

prevent FindBugs from filtering a few classes

(utilizing standard articulations) in projects, as

autogenerated asset classes and auto-produced

manifest classes. Likewise, on the off chance

that Dagger is utilized, the apparatus doesn't

need to check the created Dagger classes.

Fig. 3. findbugs-exclude.xml [5]

58 Informatica Economică vol. 25, no. 4/2021

Figure 3 presents an example of findbugs-

excllude.xml file. After that, we add it as a

gradle plugin, like in figure 4, below.

Fig. 4. gradle plugin [5]

Checkstyle

Checkstyle as an open source tool can check

many aspects of your ASCII text file. It can

find class design and method design

problems. Furthermore, it's the aptitude to test

code layouts and formatting issues.

Checkstyle is extremely customizable, and

offers support for most of the well-known

coding standards like Google and Java Style

Sun Code Conventions. In other words, it

exists the possibility of mentioning your own

rules in an XML file to enforce a custom

behavior for the project that is in

implementation phase. In fact, Checkstyle

enforces those rules by analyzing your ASCII

text file, and compares them with accredited

standards or conventions.

Integrating Checkstyle in the code requires

some configurations, as presented in figure 5.

Informatica Economică vol. 25, no. 4/2021 59

Fig. 5. Configuration example [5]

In the code presented in figure 5, are

incorporated the foundations or checks that

Checkstyle will validate in the ASCII text

document. A very important rule is

“AvoidStarImport” which, in light of the fact

that the name says, checks assuming your

ASCII text document incorporated an import

articulation like java.util.*. (All things

considered, you should expressly determine

the bundle to import, for example

java.util.Observable.)

In order to launch this check, it is necessary to

create a Gradle task. In the quality.gradle file

it’s needed to write a task called checkstyle,

see figure 6.

Fig. 6. Gradle task [5]

Notice that within the code above, first is

applied the Checkstyle Gradle plugin. It

started from a template and afterwards was

added as a predefined Gradle bunch called

confirmation.

The properties that are a must for a Checkstyle

60 Informatica Economică vol. 25, no. 4/2021

Gradle task are [5]:

• The file used for configuration ->

configFile

• IgnoreFailures: whether or to not allow

the build to continue if there are warnings.

• include: the set of patterns.

• exclude: the set of excluded patterns in

order to not scan unnecessary files, like

the ones which are generated.

Lint

The Lint tool checks an Android project

source code for potential bugs and

optimization improvements for security

correctness, usability, accessibility,

performance, and internationalization. Lint

tool offer the possibility to configure

different kind of checks for various levels of

the project. As an example: entire project and

project module.

The whole process of lint is classified in three

steps:

a. Creating lint.xml file

b. Selecting the ASCII text file for

performing analysis by Lint

(.java/.kt/XML file)

c. Checking for bugs and suggesting some

improvements

The Lint checks can be customized within the

lint.xml file. This is where the rules and the

ignore checks can be defined. For instance, if

you would like to test the unused variables and

also don't want to test for naming conventions,

you'll accomplish these tasks in lint.xml file

(you should make this new go into the

foundation directory of your Android project).

In order to configure Lint, the lintOption

block is needed to be incorporated in the

module-level build.gradle file, figure 7, [5]:

• lintConfig: the path to lint rule sets file

where you can check issues.

• htmlOutput: the path where html report

will be generated.

• abortOnError: If errors find, Lint should

exit the process.

• quiet: used to decide if it’s needed to turn

off or on the analysis progress reporting.

Fig. 7. Lint configuration example [5]

The lint.xml file can include issues for Lint to

ignore or modify. The below example is

mentioned that Lint must ignore Icon Colors

Check for whole project and ignore the path

that is mentioned in the code from figure 8.

Informatica Economică vol. 25, no. 4/2021 61

Fig. 8. Lint ignore example [5]

Conclusion

The current OWASP portable security top 10

rundown is very well refined and exhaustive.

In any case, digital security scene continually

changes, portable specifically. Both sides,

perpetrators and developers, will generally

adjust dangerously fast, and bringing issues to

light of a selected issue can imply that more

individuals are prepared to manage it soon. In

this manner it's amazingly difficult to guess

what the Mobile top 10 holds soon. We are

going to, without a doubt, see the subsequent

one – OWASP as of now accumulates

information for it. In any case, the discharge

will possibly be in 2021. Concerning 2021 the

current rundown is quite significant with no

guarantees. Shaky information stockpiling

and correspondence also awful coding

rehearses and lacking security for information

very still and in travel are critical. The entirety

of this is often something that we give

amazingly close consideration to when

creating versatile applications.

As of late, a few certify organizations utilize

Static Code Analysis devices also to test and

Code Review processes particularly in

planning and executing an Android

application as a result of the significance of

value during this major. During this text the

significance of this issue and furthermore a

few instruments for Static Code Analysis in

Android were thought of. Fundamentally, the

point is to go glancing out potential

weaknesses like bugs and security defects in

an extremely very ASCII report in Android

advancement.

Bibliography

[1] OWASP, 2021, https://owasp.org/www-

community/Source_Code_Analysis_Tool

s.

[2] Pavithra Periyasamy, Programming

Mistake Detector (PMD), 2021, Available

at:

https://www.mstsolutions.com/technical/

programming-mistake-detector-pmd/

[3] FindBugs - Find Bugs in Java Programs,

2021, Available at:

http://findbugs.sourceforge.net/

[4] Kayvan Kaseb, Static Code Analysis in

Android, May, 2020,

https://medium.com/kayvankaseb/static-

code-analysis-in-android-10c3ef83a29a.

[5] Mgbemena, C. “Ensure High-Quality

Android Code with Static Analysis

Tools,” May 2017, Available at:

https://code.tutsplus.com/tutorials/ensure-

high-quality-android-code-with-static-

analysis-tools--cms-28787.

[6] Checkstyle, 2021, Available at:

https://checkstyle.sourceforge.io/

[7] Harish Mohan, Achieve High-Quality

Android Code with Static Code Analysis

Tools, 2018, Available at:

https://www.perfomatix.com/android-

code-analysis-tools-android-app-

development-company/

[8] Google, Improve your code with lint

checks, 2021, Available at:

https://developer.android.com/studio/writ

e/lint

[9] Cristiano Calcagno et al., "Moving fast

with software verification," NASA

Formal Methods Symposium, pp. 3-11,

2015.

62 Informatica Economică vol. 25, no. 4/2021

[10] Linares-Vásquez Mario, Vendome

Christopher, Luo Qi, and Poshyvanyk

Denys, "How developers detect and fix

performance bottlenecks in android

apps.," Software Maintenance and

Evolution (ICSME), pp. 352-361, 2015

Ioan ADĂSCĂLIȚEI has graduated the Faculty of Cybernetics, Statistics and

Economics Informatics in 2018. He holds a bachelor degree in Economics

Informatics and and a master’s degree in Economics Informatics. He is

enrolled in a PhD program with the theme regarding mobile security area. He

works as an Android Developer for about six years. He is interested in Mobile

Development, including Android and iOS, Mobile Security.

