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Introduction 
Information on the type of land covering a 

geographical area plays a vital role in many 
aspects of life, from science to economics and 
from economics to politics. Accurate and 
timely information on the type of land cover 
is in high demand.  
There are two ways to detect land cover types 
from a satellite image: we can interpret the 
land cover visually (for example green color 
as vegetation, brown as soil or blue as water) 
or we can apply Artificial Intelligence tech-
niques to geospatial data (Machine Learning) 
to classify the land cover automatically. Clas-
sification in Machine Learning and statistics 
is a learning approach: the computer learns 
from the incoming data and makes predictions 
with new data. In image classification, the 
model built by research teams in their geospa-
tial data processing work, will learn to identify 
land cover type for each pixel, helping them 
to create thematic maps and to discover 
changes over time for a specific geographical 
area.  
Google has assembled a huge amount of Earth 
observation data from satellites like Landsat 
8, Landsat 7, Landsat 5, Sentinel, MODIS, 
SRTM and made them available in the cloud 

through Google Earth Engine (GEE). More 
than that, with his API’s and planetary analy-
sis functions, GEE is a powerful tool to clas-
sify images. In this article we’ll show how to 
classify an image (a geographic zone from 
Romania) using Google Earth Engine, it’s sat-
ellite maps and Machine Learning algorithms 
to classify and detect „cover-land” infor-
mation (the terrain type of a surface chosen by 
us) and also using Jupyter Notebook with Py-
thon programming language. With this mate-
rial, in which machine learning techniques 
have been used, it is hoped that researchers 
will be able to advance more easily in their 
work of processing satellite data. 
 
2 Materials and Methods 
Google Earth Engine allows the analysis and 
visualization of geospatial data. Geospatial 
(spatial) data are data about objects (people, 
roads) or events (earthquakes, floods), which 
can be located geographically by coordinates. 
There are two types of spatial data classified 
as follows: 
• vector data (points, lines, polygons are 

used and represent cities, roads, build-
ings). They are used to store the outline of 
objects; 
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• raster data: stores the contents of objects. 
For example: photos taken from an air-
plane or satellite. These dates are files that 
store information in arrays of pixels; each 
pixel contains information about a city, a 
place, a forest, etc.). Raster images can be 
found in the form: TIFF, JPEG, GIF, 
PNG. The platform is efficient in storing 
images captured by satellites. These satel-
lites are: MODIS (moderate resolution im-
aging spectroradiometer), LANDSAT and 
SENTINEL.  

The images captured with the help of satellites 
are useful in forest analysis, deforestation 
tracking, water-covered areas, land use 
change, land cover, land health assessment, 
etc. Moderate Resolution Imaging Spectrora-
diometer (MODIS) is an instrument equipped 
with sensors that acquire images since 1999, 
daily images, surface reflectance adjusted 
BRDF for 16 days, reflection factor, is the 
proportion of light reflected on the surface a 
material, by-products such as indications of 
vegetation or snow cover [1]. Google Earth 
Engine organizes geospatial information to be 
universally accessible and useful, and makes 
it available for analysis. It is worth mentioning 
that data and images can be imported from 
third parties into the Earth Engine for analysis. 
Any analysis performed in the Earth Engine 
can be used by third party tools. The catalog 
with available data sets includes: 
• Landsat catalog (USGS / NASA); 
• MODIS data sets; 
• Sentinel-1 date; 
• precipitation data; 
• sea surface temperature data; 
• data on climate, altitude and altitude. 
Users can upload their own data to Earth En-
gine for analysis (raster data or vector data: 
GeoTIFF or shape files). When we talk about 
satellites, we refer to Remote Sensing images 
(collecting information about objects at a dis-
tance, without direct contact, using sensors). 
There are two ways to extract information 
from satellite images of the terrain: 
• Maps are made with variables such as bi-

omass, LAI (Leaf Area Index), tree can-
opy (these variables change depending on 

the season, e.g.: LAI will be lower in win-
ter than in summer); 

• Maps are made with variables such as land 
cover, burned areas, floods, forests and a 
distinction is made between agriculture, 
forest, water areas, and this is called IM-
AGE CLASSIFICATION or THEMATIC 
REMOTE SENSING (thematic RS). 

Image classification is the most widely used 
type of ML and remote sensing. Image classi-
fication is an automatic approach to classify-
ing raster (satellite) and vector images. For 
GIS and remote sensing systems, supervised 
and unsupervised image classification is used 
[2]. 
In the land cover classification studies of the 
last decade, results have been obtained with 
better accuracy when satellite images from a 
time series have been used, series of images 
from the same area taken at different times 
(time series satellite images) versus using im-
ages taken at one time. Recently, the availa-
bility of Google Earth Engine (GEE), which is 
a cloud-based computing platform, has gained 
attention for remote sensing-based applica-
tions: acquisition of information about a phe-
nomenon or object without physical contact 
with that object. Temporal aggregation meth-
ods derived from time series images are 
widely applied. For example, using „mean” or 
„median” values from a time-series of images 
(temporal series) is better than using only one 
image from that time series. As will be shown 
below, in GEE, many techniques simply use 
and select as many images as possible, regard-
less of how many of these images (annual, 
monthly, or seasonal) could affect the accu-
racy / precision of the classification. In the su-
pervised classification, it starts with a set of 
training data, which are actually points on the 
map (with their spectral values) at which it is 
known what type of terrain it represents [3]. 
Romania (and regions in Romania) will be 
chosen as the study area. As for data, it will be 
used LANDSAT satellites data and MODIS 
satellite data. LANDSAT satellites have the 
optimal ground resolution and spectral bands 
to efficiently track land use and to document 
land change due to climate change, urbaniza-
tion, drought, wildfire, biomass changes. 
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MODIS satellites (Moderate Resolution Im-
aging Spectroradiometer) provides complete 
daily coverage of the earth. The purpose of 
GEE is to classify the pixels of an image (pro-
cess called “image classification”), meaning 
to identify and portray the type of land cover 
on the ground. This research will explain how 
to build a predictive model which will guess 
the type of land as geographic information, 
such as water, urban area, forest on a geo-
graphical region chosen by the user from a 
Google map. The technique used is Machine 
Learning. Image classification is perhaps the 
most important part of digital image analysis. 
In order to better deepen the research topic, we 
tested the generation of maps on various areas 
in Romania (Bucharest or the Carpathian 
Mountains area) using the Jupyter Notebook 
platform that uses the Python language. Jupy-
ter Notebook is a platform similar to Google 
Earth Engine, which uses Python as a pro-
gramming language compared to JavaScript. 

This has allowed the documentation, data vis-
ualization and storage to be much easier to 
use. Jupyter Notebook allows data cleaning, 
statistical modeling, ML model training and 
data visualization. Jupyter allows users to 
view code results online without dependence 
on other parts of the code. In the notebook, 
each cell of the code can be checked at any 
time to draw an output. Because of this, Jupy-
ter helps print the output line, which becomes 
extremely useful for the exploratory infor-
mation analysis (EDA) process. The Figure 1 
summarizes the 3 components of this re-
search: a huge catalog of satellite images and 
geospatial data sets (owned by Google), a Ma-
chine Learning algorithm to guess or predict 
the “cover land” information and the final ap-
plication written in JavaScript/Phyton inside 
the code editor provided by Google Earth En-
gine/Jupyter Notebook.

 

 
Fig. 1. Components of research 

 
The goal is to build a model, also called „a 
classifier”. This model will learn to identify 
the type of terrain, only by feeding it with data 
already labeled. The data from which the 
model will learn contain an additional infor-
mation that designates the type of terrain. In 
the "world" of artificial intelligence, it is said 
”data is labeled” meaning that the data is 
grouped into a specific category or class. The 
type of terrain is actually the label of that point 
on the map and represents the class to which 
it belongs. Labels are nothing more than con-
secutive integers. For example, the number 
zero can denote the type of land "water" and 
the number "1" can denote the type of land 
"vegetation" [4].  

This model which was trained and was taught 
to recognize the label will be used with new 
data from the region to be classified and it will 
identify which class/category/type of terrain 
the new data will fall into. The model finally 
will provide new information, a new attribute 
for each pixel on the map: terrain type (the 
pixel class). Every class (or type of terrain) 
will have an associated color from the Annual 
International Geosphere-Biosphere Program 
(IGBP). Knowing that geospatial datasets 
contain one or more layers called bands, for 
training data we’ll select data from the first 
MODIS band called LC-Type1 band. The rea-
son why the first Modis band was chosen is 
because it contains that additional attribute 
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called “label” which is in fact the type of ter-
rain or landcover type [5]. 
  
3 Google Earth Engine using JavaScript  
The model which will be built in JavaScript, 
will be a classifier and it will be called as such: 
the Classifier. It contains in fact an algorithm, 
a Machine Learning algorithm which will cat-
egorize the type of terrain (where that pixel, 
from the Google map, resides). The Classifier 
will initially be trained on MODIS data (used 
as training data) in order to learn how to dis-
tinguish the type of terrain. After that we’ll ap-
ply the Classifier on a Google Maps region 
chosen by the user, such as Banat, Transylva-
nia or a hand-drawn polygon. To be sure it’s 
working well, we’ll take new data (called val-
idation data) and we’ll put the classifier back 
to work, we’ll display the classified image 
(where each type of terrain is colored differ-
ently), we’ll calculate the accuracy of the clas-
sification and we’ll print the error matrix.  
Inside GEE editor will be chosen Landsat 8 
satellite images, with the mention that any 
other source image can be used, as can be seen 
in image. Writing Landsat 8 in the search box, 
GEE is listing all the Landsat 8 datasets. The 
USGS Landsat 8 Collection 1 Tier 1 and Real-
Time data TOA Reflectance collection is cho-
sen and GEE will generate some variable 
shown in the Figure 2. This variable can also 
be manually written using a special ID of this 
data set [6]. For the geographical area to be 
classified, either it will be chosen to manually 
draw a polygon (an area from Romania, case 
in which GEE it will generate a variable) or it 
will be added code to generate a variable with 
the coordinates of the region/polygon called 
Region Romania. This image collection is fil-
tered by date (the summer of 2019), by region 
and another new filter for the clouds. We’ll re-
move images with high-cloud cover using: 
 
sort('CLOUD_COVER')  
filterMetadata(“CLOUD_COVER”, 
“less_than”, 1) 

 
Because images are taken at different times, 
atmospheric conditions can change spectral 
values. To reduce this effect, the first least 
cloudy image is chosen from the collection, 

using the first () function: 
 

var landsat = ee.Image(ee.ImageCollec-
tion('LANDSAT/LC08/C01/T1_RT_TOA') 

.filterDate('2019-06-01', '2019-09-
30') 

.filterBounds(Region_Romania) 
.sort('CLOUD_COVER') 
.first()); 
 

After this filtering operation, to view the re-
sulting image, the addLayer function is used 
(which adds an EE object as a map layer) hav-
ing the following parameters: 
• the resulting image after applying the fil-

ters; 
• the Landsat spectral bands we decided to 

be displayed: we will choose only 3 bands 
B4, B3 and B2 (blue, green, red); 

• the chosen name of this layer to be dis-
played: „Landsat with 3 bands, RGB”. 

 
Map.addLayer(land-
sat,{bands:["B4","B3","B2"]},"Landsat 
with 3 bands, RGB") 

 
To calculate the cloudiness score it is neces-
sary to clean the cloud images, using the com-
mand:  
 
var cloudScore = ee.Algorithms.Land-
sat.simpleCloudScore (landsat).select 
('cloud'); 
 
We will mask the clouds with a cloud index 
higher than 50. This score (which is in the 
range of [0.100]) is randomly selected at 50 
(as a cloudiness index), but can have any 
value. Then it is a need to apply a reducer (a 
GEE technique) for the best possible masking 
in the cloud. The Reduction function (which 
acts on all the bands of an image and on all the 
pixels) will receive Landsat data as input and 
will aggregate pixels on all bands of an image. 
The reducer will choose a minimum of the 
spectral value for each pixel and for each 
band, passing through the desired bands. The 
result of these operations will generate the 
variable "input".  Basically, this variable con-
tains a desired image as clean as possible: 
 
var input = landsat.updateMask(land-
sat.mask().re-
duce('min').and(cloudScore.lte(50))); 
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For training data (which is actually a collec-
tion of features, a featureCollection), one of 
the properties (or attribute) is the class label. 
Labels are actually consecutive integers. For 
example, the number zero can be assigned to 
the label „water", and the number one can be 
assigned to the label "vegetation". The train-
ing data is imported from a good source called 
MODIS. As it was done with Landsat data, a 
Modis data ID is also used and a data set from 
January 2019 is chosen, the year from which 
we also chose Landsat data. It is ideal to find 
out the specific day, month and year of the 
least cloudy map used for Landsat to be able 
to use the same day of the year for MODIS 
data. By using: 
 
ee.Date(image.get('sys-
tem:time_start')).format('YYYY-MM-
dd').getInfo()) 

 

it was displayed the date of the least clouded 
Landsat map: "2019_08_14 ”. So, that day it 
will be specified in our code:  
 
var modis = ee.Im-
age(“MODIS/006/MCD12Q1/2019_08_14”).se-
lect('Land_Cover_Type_1'); 
 
From this data set, only the first band called 
“LC_Type1” or “Land-Cover_Type_1” is 
chosen because it offers the class or label. The 
chosen band "LC_Type1" has 17 classes, 
which will be used for classification, i.e. for 
recognizing the types of terrain after the clas-
sifier has learned to do so with training data. 
With the Modis data set (contained in the 
“modis” variable), the function addBands is 
used to add the additional band containing 17 
labels. The GEE documentation helps the user 
to use libraries and functions, as can be seen 
in Figure 2.

 

 
Fig. 2. GEE functions  

 
Therefore, using the GEE platform, it ensures 
that, to all the information that is brought by 
the Landsat data (contained in the “input” var-
iable), an additional information is added: the 
class or the type of terrain brought by the 
MODIS data set. A sample of 5,000 points of 
data is collected from the Landsat and MODIS 
image. 
 
var training = input.addBands(modis).sam-
ple({  numPixels: 5000,   seed: 0}); 

 

After the printing operation on the GEE con-
sole, it can be seen how this operation supple-
mented the Landsat data information with an-
other information (from MODIS) that helps 
the classifier to learn the class from where that 
pixel belongs. 
It is worth mentioning that GEE has another 
technique for adding that information contain-
ing the type of terrain (class) from the MODIS 
data set: using sampleRegions function. Like 
addBands function, this one also converts 
each pixel into a specific GEE data structure 
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called feature and returns a collection of fea-
tures (featureCollections). Feature - as a GEE 
data type - is an abstraction made by Google 
Earth to be able to succeed in data processing. 
Features are actually objects. They are GeoJa-
son data (a special format for encoding geo-
graphic data structures, a format that is able to 
describe Geometry data types such as point, 
line, polygon) and can be seen as a list of prop-
erties among which, the most important one, 
is Geometry. These features can also be 
viewed as a row in a table/matrix where one 
of the columns is Geometry [7]. 
Returning to the sampleRegions operation: 
practically this technique overlaps points (an 
overlay process) from two images: one from 
Landsat and one from MODIS: 

var training = input.select(bands).sam-
pleRegions({ 
  collections: modis, 
 properties: ['Land_Cover_Type_1'],                         
scale: 30}); 

 
Note that the feature collection is specified 
and also the property containing the class: the 
name of the Modis band which contains all the 
classes called “Land_Cover_Type_1”. 
The training data sample is now ready. With 
this data, the model (the classifier) is trained 
and therefore „taught” to recognize the type of 
terrain for each pixel. The user can choose any 
of classifiers presented by GEE (each having 
its own classification algorithm), as seen in 
Figure 3.

 

 
Fig. 3. The type of classifier: smileRandomforest 

 
By selecting the classifier that works with the 
RandomForest algorithm, with 50 trees, we 
train the classifier with the training data: 
var classifier = ee.Classifier.smileRan-
domForest (50) .train (training, 
'Land_Cover_Type_1'); 

The result obtained (after the training and 
learning operation of the classifier) will be 
contained in the classifier variable. This is 
also the name of the classifier ready to classify 
any other data, dots or pixels. The model is fed 
with new data of the image desired to be clas-
sified, contained in the variable "input": 
 

var classified = input.classify (classi-
fier); 

     
This line of code actually classifies the desired 
image, using a trained classifier with 5,000                                        
MODIS data.To verify the accuracy of the 
classifier is necessary to see the Confusion 
Matrix, also known as “the error matrix”. This 
matrix reflects the difference between reality 
(on the ground) and the     predictions made by 
the classifier. 

 
var trainAccuracy = classifier.confusion-
Matrix(); 
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A new data collection will be used, as was ex-
plained at the beginning of this research. With 
this new data set, the classifier should be re-
launched. In Machine Learning, this is called 
„the validation operation”. Most of the time, it 
is a good practice to use new sets of data, 
called „test data” and/or „validation data”. 
Actually, is better to use both sets of data, test 
data and validation data. In this case it was 
used only validation data. The new data is ran-
domly generated by changing the seed to „1” 
in the sampling operation and then filter to re-
move null pixels, using the B1 Coastal Aero-
sol band: 
 
var validation = in-
put.addBands(modis).sample({ 
numPixels: 5000, 
seed: 1 
 }) 
.filter (ee.Filter.neq('B1',null)); 

 
The validation data is now classified with: 
var validated = validation.classify(clas-
sifier); 

 
And the error matrix is once again being cal-
culated, this time on the validation data: 
 
 var testAccuracy = validated.errorMa-
trix('Land_Cover_Type_1', 'classifica-
tion'); 

 

Display the results: 
 
print('Validation error ,atric: ', tes-
tAccuracy); 

 
To display a colored map of the selected re-
gion, it is necessary to define a color palette. 
For this, we intend to use the same set of 17 
colors that were used by the research pro-
gram called International Geosphere-Bio-
sphere Programme (IGBP) dedicated to stud-
ying the phenomenon of global change. This 
is because Modis data contains the same 
number of classes or labels: 17 classes, each 
class being a type of terrain found on the 
ground [8].  
So, having defined a color palette, in our 
code we use the variable igpbPalette (called 
like that because it works with the IGPB 
standard colors) and display two layers: a 
map layer "Landsat" and a layer called „the-
matic map classified” which is the result of a 
prediction made by the trained classifier 
(trained using MODIS source): 
 
Map.centerObject(Region_Romania,10); 
Map.addLayer(input, {bands: ['B3', 'B2', 
'B1'], max: 0.4}, 'landsat'); 
Map.addLayer(classified, {palette: igbp-
Palette, min: 0, max: 17}, 'harta temat-
ica-harta clasificata')

 

 
Fig. 4. The results of the classification process using a Machine Learning algorithm  
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From the above classified map, the re-
searcher can easily “read” the type of terrain 
(the class) by associating the map colors with 
the IGBP color palette.  
For example: 
• the RED color is urban and built-up area 
• the BLUE color is water 
• the GREEN color is evergreen broadleaf 

forest or mixed forest 
• the GREY color is barren land 

 
4 Jupyter Notebook using Python 
For researchers there is a way to work with the 
entire arsenal offered by Google Earth Engine 
but not necessarily on the native platform and 
not necessarily with JavaScript language. In-
stead, Jupyter platform use the Python lan-
guage which can do the same work in a differ-
ent way. Both JavaScript and Python are use-
ful, easy to learn and good for writing short 
scripts, but Python aims much higher through 
its ability to work with objects (object-ori-
ented programming language) and, in addi-
tion, it is the language that lends itself perfect 
in the IT areas of Data Analytics, Artificial In-
telligence and Machine Learning. Given that 
the classification process is part of ML jobs, it 
would be more natural to use Python lan-
guage. This chapter explains the technique to 
make the transition from the GEE framework 
to a Python environment (such as Jupyter 
Notebook) where users can still use the GEE 
strengths. To set up the Python environment 
that allows interaction with Google Earth En-
gine, a special package called geemap is re-
quired. Geemap package offers the entire Py-
thon ecosystem, with its various libraries and 
special tools for exploring Google Earth En-
gine [9]. 
Users who want to migrate to Python ecosys-
tem, should follow the following steps: 

1.A new environment called gee is created in 
Command prompt 

conda create –n gee python 

2. The new environment is activated 
conda activate gee 

3. From within gee environment, install 
geemap 

conda install –c conda – forge geemap 

4. The default loading of the Jupyter extension 
is also expected  
5. Launch Jupyter Notebook 

jupyter notebook 

6. Jupyter opens automatically and write 
down the first command 

import geemap 

And follow the instructions to authorize ac-
cess needed by Earth Engine. 
The Python programmers can write code in 
Python to succeed in the classification exer-
cise done above. In this new demo it was se-
lected a region around Bucharest (the center 
of the image having 26.053 and 44.452 as co-
ordinates), with a buffer zone of 10.000 me-
ters. To have an eye-catching display, it was 
used the near-infrared band (B5), as was ex-
plained below:  
 
region=ee.Geome-
try.Point([26.053,44.452]).buffer(10000) 
image = ee.ImageCollection('LAND-
SAT/LC08/C01/T1_SR') \ 
     .filterBounds(re-
gion) \ 
     .filterDate('2019-
06-01', '2019-09-30') \ 
     
.sort('CLOUD_COVER') \ 
     .first() \ 
     .select('B[1-7]') 
vis_params = { 
     'min': 0, 
     'max': 3000, 
     'bands': ['B5', 
'B4', 'B3']} 
Map.centerObject(region, 8) 
Map.addLayer(image, vis_params, "Landsat-
8")
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Fig. 5. Selected area of Romania to be classified, in a false-color composite 

 
The image displayed (Figure 5) is in, what is 
called, a false-color composites. Band B5 it 
was used for near-infrared range, together 
with B4 and B3 bands (red and green colors). 
The selection of these bands was made to al-
low the user to visualize the wavelengths the 
human eye does not see (near the infrared 
range). The use of bands, such as near infra-
red, increases spectral separation and can en-
hance the interpretability of data. In contrast 
to a true-color image, a false-color image is 
not rendering in natural colors in order to ease 
the detection of features that are not easy to be 
seen. The use of near infrared band for the de-
tection of vegetation is very popular method 
in satellite images. As was the case with the 
above demonstration of the classification al-
gorithm from within GEE environment (see 
the previous chapter), the Modis Land Cover 
Type Yearly Global data are used as the train-
ing data. From Modis data, which are already 

labeled, a sample is extracted based on some 
criteria. A new layer called "training" and 
consisting of 5000 Modis points/pixels (black 
dots on the map as seen in Figure 6), will be 
displayed on the screen.  
This is actually a GEE technique for the for-
mation of training data, by using a method that 
overlaps the Modis points (with sampleRe-
gion function) with the image to be classified 
(see Figure 6) [10]. In this way, to all the data 
provided by the chosen image, it will be added 
that information given by Modis (from the 
variable “points”) that specifies the class or 
type of terrain of that pixel. The line of code 
to do that is:  
 
training = image.select(bands).sampleRe-
gions(**{ 
 'collection': points, 
  'properties': [label], 
  'scale': 30}) 
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Fig. 6. The overlay of Modis points with the image to be classified 

 
A simple line of code is enough to describe the 
first Modis point (which is a point, a Geome-
try type) and to demonstrate that MODIS data 
contains an additional information (needed for 
classification) called the “class” or “label”. 
This info actually describes the type of terrain 
of each    point contained in the “points” vari-
able: 
 
print(points.first().getInfo())  

The result is shown below: 
{'type': 'Feature', 'geometry': {'type': 
'Point', 'coordinates': 
[27.491495166136097, 
44.83389043165135]}, 'id': '0', 'proper-
ties': {'LC_Type1': 12}} 

 
Here, the description of the first Modis point 

shows that it resides on the type of land having 
number 12, which is croplands: at least 60% 
of area is cultivated cropland. After feeding 
the model (the classifier) with training data in 
order to learn to predict the type of land of 
every pixel, the researcher is using it to guess 
the labels of new data, the data coming from 
the region of his choice. Because Modis data 
has 17 classes, to make the demonstration 
more interesting and colorful, we are using a 
set of 17 colors (a color for each class) which 
is the same set used by the International Geo-
sphere-Biosphere Program. The result is a the-
matic map which is actually a prediction made 
by the trained classifier (trained using MODIS 
source, Figure 7).
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Fig. 7. The final display of the classified image in IGBP colors 

 
5 Conclusion 
Thematic maps, like the one built in this re-
search, helps to simplify and clarify the mes-
sage of the map. Classification and map gen-
eralization matters in every attempt to sim-
plify the real world when raw data brings con-
fusion. However, we need to be cautious be-
cause we may create false patterns which will 
demolish the actual geographic phenomena 
we are trying to present. The classification 
process is grouping together similar observa-
tions and puts apart those observations that are 
substantially different. Finding the ideal num-
ber of classes is challenging. In the above ex-
ercise, intentionally it was used more classes 
than a usual map classification (it was done 
for all the classes offered by MODIS data and 
all 17 colors of International Geosphere-Bio-
sphere Program) but, in order to be safe, is bet-
ter to make a thematic map with 3-7 data clas-
ses. The more colors are used, the harder is to 
read maps so the risk of map reading errors 
increases. 
This material presented how GEE knows how 
to process data using its spectacular toolset 
and functions and wanted to teach researchers 
how to move to a Python platform to do the 
same things but with a different language. The 

benefits of Artificial Intelligence (specifically 
Machine Learning) shown here, for the task of 
a map classification, are only a small fraction 
of the wide range of possibilities and strengths 
of AI in satellite data processing. 
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