
76   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

Quality Characteristics of Mobile Learning Applications 
 

Dinu MIHAIL-VĂDUVA 
Bucharest University of Economic Studies 

dinu.mihailvaduva@stud.ase.ro 
 
Software quality evaluation for mobile application is a subject with major implications onto 
educational evaluating process. The place where teacher and his educable person build a 
temporary social relation is connected to an environment where success is correlated with a 
mobile-driven mindset. A suitable examination of such mobile learning - environment implies 
quality characteristics like functional correctness and testability and should be conducted with 
proper tools if we desire to use mobile learning applications for implementing into a 
collaborative scenario toward complex classroom events. In this article we are making a raised 
mark above quality characteristics of mobile learning applications because this is the starting 
point to acquire a certain comprehension concerning a better utilization of such methods for 
obtaining knowledge. We construct a potential bridge between two quality characteristics of 
mobile learning applications to show how to transfer practical results from one quality 
characteristic toward another to sustain an experimental study with adjacent outline involving 
mobile programming laboratory curricula. We focus our attention above a software quality 
metric, the so-called statement code coverage (CC), to obtain a synergic effect between a black-
box approach and a white-box technique in order for developing and testing Android mobile 
applications. For reaching our desideratum we studied scientific papers regarding the 
complexity of quality characteristics applied to mobile learning applications, from a general to 
a particular view, to shed light above previous gathering observations concerning our mission. 
We have a genuine desire to reveal technical instructions needed to be executed in order to 
obtain a reproducible pattern of a manually testing process, concerning an Android mobile 
application, conducted by a beta-testing team of users. 
Keywords: Mobile Applications, Mobile Learning, Android, Quality Metrics, Econometrics 
 

Introduction 
A general overview among quality 

characteristics of mobile learning represented 
by mobile applications implies a profound 
knowledge about standardized specifications 
related to software dedicated to be used inside 
a particularly hardware like those represented 
by mobile devices. Looking for more details 
about quality characteristics of mobile 
applications attached to any social activity in 
a way that could be orientated toward 
education we find a zone where previous 
general specifications of mobile applications 
suffer a transposition determined by a large 
variety of preferences or choices encounter at 
the level of user groups. Our path of research 
follows a direction from general 
specifications of quality characteristics 
allocated to mobile applications through 
discrete quality characteristics encounter at 
the level of mobile learning applications. In 

our article the experimental study is orientated 
toward a practical activity engaged to 
establish values of statement code coverage 
obtained through a beta testing process of 
evaluating the quality characteristic of 
functional correctness and testability. We 
consider that functional correctness and 
testability is a milestone for a system of 
quality characteristics of m-learning 
applications and our research involving such 
quality characteristics is motivated by the fact 
that the results could be implemented into a 
laboratory experiment executed at the level of 
a programming mobile discipline.  
This paper is structured as follows. The first 
section is a general overview of the subject 
chosen about quality characteristics regarded 
mobile application toward mobile learning 
objective.  The second section shows the 
salient facts of software quality characteristics 
of mobile application, discrete quality 

1 



Informatica Economică vol. 23, no. 4/2019  77 

DOI: 10.12948/issn14531305/23.4.2019.07 

characteristics of mobile learning application 
and the reason for why we proceed with an 
evaluation about the statement code coverage 
metric in our research.  The third section 
reveals our efforts to extract from scientific 
literature technical details about the statement 
code coverage evaluation, dedicated 
frameworks to measure it. The fourth section 
shows a methodology to investigate, with 
ACVTool, an evaluation about a quality 
percentage regarding statement code coverage 
for our own Android application [1],  virtually 
adapted, using Java language. In this section 
we put a special accent toward ACVTool 
architecture. This section explains technical 
considerations and implications about the 
process of checking manually beta testing of 
an Android application binary file (apk), with 
an emulator available into Android SDK, 
from the standpoint concerning automatically 
evaluation process of the statement code 
coverage. The fifth section explains our 
proposed solution to check and prove with the 
help of a statement code coverage percentage 
and how to recognize with a general 
classification a pattern in doing a repetitive 
manual beta testing evaluation, with the help 
of the Android’s Studio SDK emulator. In the 
sixth section we show our conclusion and 
future work related to other intentions 
regarding similar projects.   
 
2 Quality Characteristics of m-Learning 
Applications 
2.1 General overview about quality 
characteristics of mobile applications 
A group of related types concerning quality 
characteristics, extracted and adapted from 
ISO/IEC 25010 [2], to be allocated for further 
interpretation against mobile learning 
applications contains references to functional 
suitability and maintainability as a root 
chapter toward other quality subcategories 
containing detailed intrinsic functional and 
maintainability areas like functional 
correctness and testability. The quality sub-
characteristic to deliver the correct results, 
named functional correctness, meaning 
accomplishment and covering of specific 
tasks could be twined with the quality of sub-

characteristic, named testability,  designed to 
be a sign for effectiveness and efficiency of 
any test software criteria performed.  Related 
to quality characteristic named performance 
efficiency there are three sub-categories 
concerning time behavior,   resource 
utilization and capacity.  Firstly, there is a 
direction toward processing times and 
outcome rates regarding utilization of its 
source code, and secondly, the importance of 
what kind of resources used and in which 
amounts is the objective of the sub-
characteristic named resource utilization. 
Finally, the capacity tends to be an indicator 
to the maximum limits of the parameters 
allocated to the product. Compatibility is 
another quality characteristic [2] involved into 
co-existence and interoperability issues. Co-
existence is a marker for sharing a common 
software component in such a way that no 
negative impact occurs and interoperability 
shows a predisposition to exchange and use 
the information in a duplex manner. Usability 
is a complex quality mobile application 
characteristic that regards satisfaction of users 
who desires to achieve efficiency and 
effectiveness. A user wants an easy way to 
recognize if a mobile product is appropriate 
for a satisfactory utilization and, in addition, a 
less time to acquire knowledge to a proper 
handling of functions. In first case we are 
taking about the ability for a suitable 
recognize process and, supplementary to that, 
for learning to use, control, and access with 
minimum effort.  A user shows satisfaction if 
the product protects him against any inherent 
error that could occurs and user interface 
aesthetic enables a better interaction. The 
quality characteristic named reliability [2] is 
a milestone for coagulating mandatory 
conditions needed to operate under normal 
parameters, above inherent hardware faults, 
with the ability for a recover action, if the 
situation required, or to be fault tolerance. An 
attribute of quality regarding security is 
always a point where different technical areas 
converges coming from prevention about 
unauthorized access to, tampering of, source 
code or documentation. Non-repudiation is, in 
this case, the quality attribute for security 



78   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

characteristic that offers certain prove related 
to a past event that cannot be rejecting later. 
The non-repudiation cannot be done if an 
automatic procedure, attached to the mobile 
application, to trace actions or events is not 
available and this capability, therefore, is 
named accountability. A resource or user 
connected during the normal utilization of the 
mobile application must be recognized as an 
authentic one if a proved formal guarantee is 
delivered. The ability to be not difficult for 
analysis, altering and testing is always related 
to the quality characteristic named 
maintainability [2]. If effectiveness of a 
successfully installation of a mobile 
application product, into different hardware, 
was acquired then the quality characteristic 
could be named portability. 
 
2.2 Specific quality characteristics of m-
learning applications 
A research about discrete quality 
characteristics related to m-learning 
applications was conducted by Pocatilu [3] 
from which we learn that the most important 
characteristics were aggregated around 
loading time, path length, level of user 
required information, continuity of interaction 
between human and mobile application, the 
length of the path toward resources required 
by the application and the complexity of the 
used components. From this research [3] they 
conclude that an important quality 
characteristic, 17%, is connected to the time, 
expressed in seconds, needed to load logical 
interfaces located inside the mobile 
applications and, not a less important one, 15 
%, is the level of the information required by 
the mobile application against user profile. 
From all of these quality characteristics 
mentioned above we consider that functional 
correctness and testability of the mobile 
application is a common denominator if the 
statement code coverage could be analyzed 
through an experimental study.  
It is known that the quality characteristic 
named functional correctness and 
testability has a metric named code coverage 
which is a measure in computer science that 
embraces a percentage of code that could by 

calculated when a specific software test case 
was done.  Java code coverage tools require 
technologies that insert statements to app’s 
Java source code and afterward recompilation 
plus instrumentation to the byte code. 
Automatic testing concerning multiple 
versions of an Android application versus a 
single version of the same Android 
Application started a research, finished by 
Quoan [4], from which we could see that a 
major component of their framework was a 
code coverage generator that inserts 
automatically instrumentation for every block 
in byte code level tested in such a way that 
logs generated exposed which block is 
executed or not. A recent study realized by 
Pilgun [5] reveals that code coverage of an 
Android application is an important metric to 
evaluate efficiency which is a key attribute 
regarding software quality evaluation. The 
main distinction between Pilgun’s research 
and the general trend of other software that 
covers code coverage inspection was that his 
method involves a black-box approach with 
no need to access Android app’s code source. 
Pilgun’s tool repository was published [6] and 
could be implemented by anyone using a 
software resource that implies Python, 
Android SDK, and Java to investigate the 
smali code coverage through any Android’s 
apk package regarding the classes, methods 
and instructions. This research team [7] 
reports a percentage of 96.9 % apps 
successfully instrumented with ACVTool 
with a small or not noticeable time overhead. 
Our research helps readers to investigate code 
coverage of their Android applications 
knowing that a similar goal is a path to a better 
efficiency regarding time consumption when 
developers build an Android project.       
 
3. Literature Review 
A compelling study about functional 
suitability, regarding completeness and data 
accuracy, was conducted by Puspaningrum 
[8] which shows that performance efficiency 
could be measured for an Academic 
Information System, which delivers support 
for learning teaching activities, keeping into 
account the relation between function and 



Informatica Economică vol. 23, no. 4/2019  79 

DOI: 10.12948/issn14531305/23.4.2019.07 

function suitability. His measurements turn 
out to be relevant to a quality improvement for 
the institution than the separate quality 
characteristics evaluation according with 
ISO/IEC 25010 only. The framework used in 
this research was based on Goal-Question-
Metrics paradigm that helps them to identify 
those educational activities or tasks important 
for quality metric measurement. From 
researcher Sari [9] we learn about the 
suitability of mobile application architecture 
between a native mobile application and a 
web-based one. She studies for the web-based 
solution different m-learning scenarios, 
effective development and the process of 
mobile application deployment and the 
limitation in browser functionality. For native 
mobile application there is a central focus to 
main benefits and development complexity 
considering a collateral effect related toward a 
hybrid solution to simplify the process of 
developing native mobile application.  The 
final conclusion of researcher Sari [9] was that 
native mobile application is a better choice for 
m-learning activities due to the capability of 
outperforming regarding offline availability, 
user experience and security options against 
other mobile application solutions. The 
quality characteristic named performance 
efficiency was studied by Olajide [10] from 
which we learn about the favorable 
parameters required by Android native 
application concerning processor time 
utilization, consumption of energy at the level 
of internal battery, usage of internal memory 
and the total time required for loading web 
pages. The author Wikanaso [11] studied how 
to implement different ways to calculate 
efficiency of usability as a tracking indicator 
for the performance of the educational 
organization which is supporting suitable 
framework for this research. They used [11] a 
psychometric scale, named Likert Scale, 
where respondents offer their approval or 
disapproval regarding o series of statements 
starting from a total disagree to an end of 
complete agreement about the user’s 
satisfaction encounter during utilization of an 
Android mobile application. The quality 
characteristic named reliability was studied 

by Meskini [12] using four theoretical 
reliability growth models applicable both to 
the desktops and mobile devices hardware 
against two mobile applications, Skype and 
Vtok. They concluded [12] that the mobile 
applications area failed to obey with the rules 
established for desktops / laptops reliability 
growth models due to the differences traced 
back to the development life cycle DLC 
allocated to mobile applications.  For 
example, because of inherent market 
constraints, as they said, there is a possibility 
to skip phases like design level which is a very 
important criterion into production of a 
mobile application. They [12] calculated a 
metric named Mean Time Between Failure, 
MTFB, for mobile applications under 
different conditions to observe cumulative 
curves regarding failure time. Another author 
Kaur [13] was involved into a research about 
software reliability metrics using an agile 
process against development of a software 
product. They emphasize different metrics 
like rate of occurrence of failure, probability 
of failure on demand, availability and mean 
time to repair. Linked to the security of a 
mobile application the researcher Khokhlov 
[14]  studied a group of internal and external 
metrics with certain influences related to the 
data security evaluation. Amongst them a 
central focus was placed about possible 
attacks of sensor data manipulation of a 
legitimate user or a non-legitimate user of a 
mobile device. They finished [14] a 
classification concerning internal and external 
metrics which contains references toward 
internal issues like root access, device lock, 
Android OS version, device model, installed 
applications but and, on the other hand,  
device rating and system vulnerabilities when 
we speak about external metrics. 
Related to functional correctness and 
testability a research to calculate code 
coverage using black box and white box 
techniques during dynamic tests over Android 
applications was completed by Horvath [15] 
which underpins the idea that a synergetic 
effect will be obtained if we follow a central 
position between them. They emphasize that a 
black box technique answers to the question 



80   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

what is the result of an application when an 
input is assigned to it, and the white box 
answers to the question how the previous 
result is obtained. This package of techniques 
returns a code coverage criterion and it offers 
an important feedback on the quality of the 
software. Their results regarding code 
coverage was studied following a path 
through test cases, redundant code and 
traceability calculations. The subject of the 
user’s point of view about the necessity to 
search quality software metric using code 
coverage reports, through Android mobile 
developers,  was a key target for scientific 
research generated by [16] which deploys a 
survey regarding code coverage issues, 
automated testing opportunities and test cases. 
This survey was harbored using the online 
platform named Qualtrics and the respondents 
were involved using email. The final outcome 
from this study was orientated through 
building of a body of knowledge which will 
be considered an important asset to any 
researcher or developer in this field. A study 
about the process of obtaining code coverage 
for Android dynamic analysis tools was 
realized by [17] which disclose their approach 
as a set of connected processes between 
decompiling an apk file, inserting 
instrumentation code, recompiling, 
repackaging and testing the final product 
modified.  They report a low rate of 
successfully repackaging Android apk file, 
situated at the value of only 36%, but the code 
coverage results were similar to those 
prefabricated with EMMA tool. EMMA [18] 
is compatible with all Android devices with 
version 4.0.3.or higher and it is recognized as 
a tool for Java code coverage.  In no way 
connected to the static analysis previously 
mentioned they started a new approach using 
offline tools like Android emulator and 
DroidBox to determine code coverage on the 
same apk packages used in static analysis. 
DroidBox [19] is a software tool to build 
dynamic analysis of Android applications 
which is known by the fact that two graphs 
could be generated automatically. First graph 
is related to the temporal sequences of the 
operations and the second one is presented 

using a tree map layout that offers parallel 
similarity between package actions. They 
reported similar results between offline and 
online tools but some observations were 
influenced by the UI operations commonly 
encountered like login activity, license 
messages or pop-up ads.  Online tools used in 
this study like Anubis, TraceDroid and 
CopperDroid are examples of discontinued 
software products which cannot be used. A 
study about the quality of industrial 
applications regarding code coverage and 
fault detection under examination of Google’s 
tool named Monkey  [20] was performed by 
[21] to identify user interface behavior and 
consequences related to it, reproduced by 
human gestures, under an assault of randomly 
user interface streams events sequences. The 
Monkey tool from Google returns the highest 
method coverage on 22 of 41 Android 
applications whose method coverage was 
obtained. This result was an answer to the 
question regarding what is the code coverage 
obtained by a test generation tool over an 
industrial Android application. Monkey tool 
can be used as a stress – test software in a 
random style and is embedded into emulator 
or device where it runs. Other test generation 
tool selected for this study was DroidBot [22] 
which allows developers to design scripts for 
a personalized strategy exploration.  DroidBot 
is a test generator input for Android 
application that generates a transition graph 
after testing. The main characteristics about 
DroidBot convey to the fact that it does not 
require application instrumentation, could 
produce user interface structures for further 
analysis, events are not based on a random 
model but a GUI one and it is programmable. 
For code coverage measurement they used a 
tool named Ella [23] to perform collecting 
statistics of method coverage. Ella tool is 
designed to instrument Android applications 
to record which methods were being touched 
with time-stamped value registered or 
estimated values of parameters of methods. 
This tool requires Unix operating system, 
Android SDK and Java SDK. Another study 
about measuring code coverage using EMMA 
was done by a team [24] which shows that 



Informatica Economică vol. 23, no. 4/2019  81 

DOI: 10.12948/issn14531305/23.4.2019.07 

their technique requires an injection of a 
method call during the application testing 
process and the EMMA tool was launched by 
an instrumentation activity responsible with 
starting of the main activity of the every 
Android application studied.  They proposed 
a software solution, Dynodroid, that is an 
input generation system for Android 
applications with a technique constructed 
around the cycle defined by the sequence 
observe – execute – select. Their algorithm 
establishes which events are important to the 
application in a predefined stage and then 
select and execute one of these events for the 
purpose of obtaining a new state where the 
whole cycle is repeated in the same way 
mentioned through above sequence. They 
recognized the importance of the human 
arbitrary actions when we need an activity, for 
experimenting some of the Android 
application functionalities like entering 
passwords or choosing different settings 
values, that generate a pause into Dynodroid 
generating mechanism but resume it 
immediately after the user’s choice is realized. 
 

4. Methodology 
We have developed our previous Android 
application [1] and let’s say that we are using 
two teams for our research, one consisting of 
programming developers, dubbed here with A 
label, and the other one, named with B label, 
for beta testing process. Our research question 
is the following:  How do we know if an 
improvement of a predefined class from our 
Java’s source code, completed by a user from 
A-Team, is properly manually tested by B-
Team, according with an imposed path of 
sequences, through a manually beta testing 
process? The answer of this question is linked 
with a proper classification of code coverage 
recorded during white box development of the 
Android application.  
To deliver a beta-testing plan from A-Team 
toward B-Team there is a need to envision a 
flow of sequences that should be followed by 
every user, from B-Team, implied in those 
activities required by a properly manually 
beta-testing process. This flow of sequences 
would be depicted as a general structure like 
our proposed model shown in Figure 1.

 
Fig. 1. General model for mobile application beta testing 

 
From Figure 1 we see that the whole beta-
testing process requires a complete running of 
all operational objectives mentioned from 
number “1” to “n”. Those operational 
objectives could be actions embedded into 
mobile application options that trigger, for 
example,  generating demo database, inserting 
a new record, searching a value, deleting a 
record or generating a report with results. If an 
user implied in a beta–testing process execute 

a complete circle from objective “1” to “n” 
then the final statement code coverage 
obtained will be according with the 
classification of statement code coverage 
documented by the A-Team.  If not all 
objectives from “1” to “n” will be completed 
then a difference for statement code coverage 
would be visible. It is necessary to say that 
repeating any particular objective, for 
example an objective like inserting a new 

  Objective 2 
User for beta-
testing activity 

Start mobile 
application 

  Objective 1 

 Objective “n” 

   

     

        Exit 

    ( End of application ) 



82   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

record, and omitting another objective, does 
not influence the final code coverage to 
achieve the proper statement code coverage 
obtained by a correct usage of beta-testing 
required plan. The software procedure 
ACVTool, developed by Pilgun [5], to reveal 
a statement code coverage requires an offline 
and online phase. The offline phase is defined 
by all software preparation needed to start 
emulator for Android application, 
instrumentation of mobile application’s apk 
and starting a separate shell for working with 
Android Debug Bridge.  The online phase is 
defined by the process of working with 
instrumented apk file following the required 
objectives and preparing final report with 
statement code coverage. The research team 
[5] establishes a performance of ACVTool 
publishing a value of 96.7 % healthy 

instrumented apps with an average total 
instrumentation time situated at the value of 
36.2 seconds per application. 
 
5. Case Study 
5.1 Application description 
Using an adequate classification, from white 
box’s point of view, we could establish a 
framework for a technical explanation about 
the flow of sequences really tested by an end 
user, in charge with a beta testing duty, against 
the primary objective required by the A-
Team. For understanding our study, we 
propose a generic and general model for a beta 
testing manually process of a predefined class, 
embedded into an Android application, that 
could be seen as a set of predefined paths, 
required to be tested by A-Team, like those 
depicted into Figure 2.

 

 
Fig. 2. The flow sequence requested by A-Team for beta testing process required to be used 

by those users from B-Team 
 
Using Figure 2 we try to explain that a group 
of different users, from B-Team, will be asked 
to execute a beta testing process, only 
following by the path defined by the flow 
sequence 1-4-6 and, specifically, will not to be 
tested using the flow 2-3-5. It is obvious that 
if above requirement will not be 
accomplished, during the phase of beta 
testing, then the effort done to any 
improvement of the Java class 1 from Figure 
2 could not be seen by the any code coverage 
software recorder. On the contrary a high 
score of statement code coverage recorded 
during “i” beta testing process should be 
interpreted as an indicator that the flow 

sequence 1-4-6 asked from A-Team was 
completed normally. It is important to say that 
the A-Team is concerned only to improve the 
Java’s class, shown in Figure 2, named with 
“Java 1”, and this will be, for our above 
research question, predefined class needed to 
be improved. The model applied to those users 
from B-Team will be considered as a black 
box one, where we know what is the result, 
and the model applied to the A-Team will be 
considered as a white box, from which we 
know what the cause regarding of the result is 
obtained by a black box model. We know 
from [15] that merging of these two models 
should obtain a synergetic effect concerning 

User X 
User 2 

User 1 

B-Team 

Objective 1 

Objective 2 

Objective “n” 

Code coverage 
software recorder 



Informatica Economică vol. 23, no. 4/2019  83 

DOI: 10.12948/issn14531305/23.4.2019.07 

the quality of the software.  
In order to evaluate statement code coverage, 
we are using a software recorder previously 
developed by a research team [5]. The 
ACVTool [5] is capable to establish a measure 
of the level concerning statements, methods 
and classes executed or touched during a 
dynamic testing applied of an Android Java 
application, without knowing its source code, 
known by the name of the statement code 

coverage. This method generates detailed 
description supported by HTML and XML 
format from which we obtain tree level reports 
viewing expanded or collapsed packages, 
through inner classes, methods and 
instructions, presented by subsequently 
numerical calculations when instrumentation 
was completed. The architecture of ACVTool 
is represented by three levels as depicted in 
Figure 3.

 

 
Fig. 3. The ACVTool methodology used to study the statement code coverage 

 
First level shows that original apk suffers a 
modification generated by some byte code 
probes injected into a smali code version of 
the apk original file. This smali code version 
of the original apk file was automatically 
obtained during a previous disassembling 
process supported by backsmali disassemble 
[25] integrated into apk tool. After this 
process a new one is automatically executed 
meaning a repackaging of the whole content 
into a new apk file with the help of the 
apksigner. The last tool, apksigner, is located 
under Android Studio SDK and is used to 
properly sign the apk file to confirm that apk’s 
signature will be verified successfully on all 
versions of Android platforms. This level 
generates an instrumentation report that will 
be combined with runtime report produced 
after the third level into a file with pickle 
extension. The second level shows that 
modified apk is installed into an emulator or a 
physical device and, afterward, a process of 
initiating instrumentation is launched.  
The third level shows that ACVTool initiate a 
drag operation of a runtime report from 
external memory of the device, used in 
previous phase, where it was recorded during 
Android application testing. This report is 
overlapped with the instrumentation report 
generated by the first level. This report offers 
a sum of information starting with the name of 
the smali package followed by a percentage 

number indicating the ratio of the code 
coverage and numbers representing missed 
versus executed or touched instructions along 
the process of testing the Android application.  
 
5.2 Application implementation 
Our research methodology was cyclically 
implemented using a new architecture 
illustrated in Figure 4. 
For our study we choose to apply ACVTool to 
our previous Android Java application [1] to 
evaluate the efficiency of the statement code 
coverage metric when we want to classify the 
activity of beta testing accomplished by a 
group of users. We proceed for collecting 
values concerning statement code coverage 
with ACVTool to find a general classification 
of statement code coverage established during 
white box’s development. Our software 
resources allocated to this study are 
represented by Android Studio SDK from 
which we are using the adb.exe (Android 
Debug Bridge). In this case, the emulator used 
in our experiment is nexus_5x_api_27. Our 
operating system was Windows 10. We used 
three interfaces to operate with adb tool, 
ACVTool and the last one used for starting the 
Android emulator. There is necessary to say 
that testing for our Android Java apk project 
was conducted in a manual style and Android 
Studio was not loaded during this 
methodology.

First level 
- Disassembling process 
- Instrumentation 
- Build and sign apk 
 

Second Level 
- Install apk onto 

mobile emulator 

Third level 
- Extract report with code 

coverage from external 
memory of mobile emulator 



84   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

 
Fig. 4. The methodology used to study in our research the statement code coverage 

 
We choose a manual apk testing style because 
in our research we want to evaluate any 
modification with regression analysis 
regarding the correlation between dates 
recorded with ACVTool when the team in 
charge with testing Android apk application 
executes different task at the level of the 
emulator. The stage 4 in figure 4 is necessary 
because any new testing and evaluation for 

statement code coverage with ACVTool 
overwrite the local default directory used to 
save the final HTML and XML runtime 
report. Our study refers to the general framing 
of different use cases, regarding statement 
code coverage, at the level of using our 
Android application into emulator, presented 
into the Figure 5.

  

 
Fig. 5. The cases used for flow sequence applied to beta testing process 

 
The target class DatabaseProject and it was 
monitored using ACVTool. Our experimental 

data, from white box’s point of view, are 
classified in Table 1.  

 

Offline phase 

APK Instrumentation with 
ACVTool 

Online Cyclic phase 

1. Start adb shell command 
2. Start emulator nexus_5x_api_27 
3. Open manually interface ACVTool 

 
4. Save environment for ACVTool 

report home directory  
5. Close online phase 
6. Evaluating statement code 

coverage 

 Start application apk (1) 

    View computation list data (2) Select row from list 
records (7) 

- Update / Modify (8) 
- Delete record (9) 

General Activity 

- Delete all records (3) 
- Insert Demo Records (4) 
- Insert new record (5) 
- Save record (6) 



Informatica Economică vol. 23, no. 4/2019  85 

DOI: 10.12948/issn14531305/23.4.2019.07 

Table 1. Data obtained related to statement code coverage white box use cases 
Interval Minimum 

Value CC 
Maximum 
Value CC 

Flow Sequence  

1 0 9.69 Activate application’s interface (1) 
2 11.47 15.67 Insert + Save  + Delete all records (1-5-6-3) 
3 15.67 17.44 Insert + Save (1-5) 
4 17.44 35.7 Insert database Demo (1-4) 
5 35.7 37.47 View computational list (1-2) 
6 37.47 39.25 View computational list + Select on row (1-2-7) 
7 39.25 40.87 Insert database Demo + Insert + Save + Delete all 

Records (1-4-5-6-3) 
8 47.33 67.37 Insert database Demo + Update + Delete (1-4-2-7-8-

9) 
9 83.36 96.93 Insert database Demo + Update + Delete + Save new 

records (1-4-2-7-8-9-6) 
 
6 Interpretation  
From black box’s point of view, a group of 
user in charge with beta testing duties uses the 

Android application instrumented with 
AVCTool and loaded into an emulator and 
obtained the values recorded into the Table 2. 

 
Table 2. Data obtained related to statement code coverage 

User  Code Coverage 
(CC) (%) 

Missed 
Line 

Line Missed 
Method 

Method Missed 
Class 

Class Interval 
Classification 
for beta testing 

1 39.25 376 619 12 19 0 1 6 
2 40.87 366 619 12 19 0 1 7 
3 67.37 202 619 6 19 0 1 8 
4 95.15 30 619 3 19 0 1 9 
5 35.7 398 619 12 19 0 1 5 
6 39.25 376 619 12 19 0 1 6 
7 67.37 202 619 6 19 0 1 8 

 
Using general classification shown into the 
table 1 we consider the following outcomes 
classified after the code coverage obtained.  In 
this way we have a technical disclosure about 
the activity deployed by any end user in 

charge with beta testing activity. The formula 
used to calculate the values, allocated to 
statement code coverage, indicated by code 
coverage (CC), in Table 1 is:

 
Statement code coverage (CC) = 100 −	%&''()	*&+(

*&+(
	× 100 (1) 

 
From Table 2 we concluded that only user 
with number 4, with 95.15 % code coverage 
(CC), has reached the flow sequence asked for 
a complete beta testing required. All statement 
code coverages shown in table 1 are 
reproducible results. The highest value 
obtained for the statement code coverage is 
assigned to the exhaustive way of doing a beta 
testing process against an Android 
application. The flow of sequence studied by 
a beta testing process will have the statement 
code coverage established by the highest code 

coverage embedded into the primary 
sequences. Testing the composite elements of 
a flow sequence will not have a meaning that 
all statement code coverage allocated to every 
element will be added to the final result. If an 
end user in charge with beta testing repeat 
execution for a function, then this fact does 
not mean a highest code coverage result. In 
this case the code coverage result is 
determined by the use case specified by the 
function itself. 



86   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

The scenario used to manually test the apk 
application has a starting point during the 
second level indicated under the fifth label in 
figure 2. After installation of instrumented 
apk into emulator and starting it we proceed to 
use and test the Android apk application using 
only a pattern of actions preselected.  
We proposed that arithmetic mean formula for 
overall statement code coverage allocated to 
the Java sources of the Android application 
apk should be calculated without taking into 
consideration values reported for Android 
support classes, R classes or other classes 
automatically generated and always 
embedded into any final apk product 
according with the latest Android technology 
production.  
 
7. Conclusions and Future Work 
Technical conditions discovered, seen as a 
software perspective, for a valid 
implementation of ACVTool, toward a beta 
testing process of Android applications, using 
code coverage metric, will be correlated with 
a proper utilization of Android operating 
system, Android Debug Bridge to consolidate 
the path between a mobile emulator and 
ACVTool, Java and Python. There are real 
opportunities to track the evolution of 
different beta testing scenarios, inside of a 
specialized educational laboratory for mobile 
programming, when we try to manually 
testing an Android application. The 
information recorded into runtime report 
generated by ACVTool could be 
automatically extracted and inserted into a 
database log file to a future interpretation. For 
this objective there is a need to use SQLite 
with the help of Android Debug Bridge. The 
statement code coverage is a software quality 
metric that could be rapidly evaluated and 
generates feedback actions to improve general 
structure of an Android’s application and is an 
excellent topic for a laboratory dedicated to 
study programming and testing Android 
applications for mobile devices. The 
following directions will be considered to 
improve our work: 

 
 

Acknowledgment 
Parts of this research have been published in the 
Proceedings of the 18th International Conference 
on Informatics in Economy, IE 2019 [26]. 
 
References 
[1]  D. Mihail-Vaduva, "Enriching Curricula 

with Mobile Solutions," Informatica 
Economică, vol. 22, no. 3, 2018.  

[2]  IEC25010. [Online]. Available: 
https://iso25000.com/index.php/en/iso-
25000-standards/iso-25010. [Accessed 04 
April 2019]. 

[3]  P. Pocatilu and C. Boja, "Quality 
characteristics and metrics related to m-
learning process," Anfiteatru economic, 
nr. 26, Vol XI., Iunie 2009.  

[4]  D. Quoan, Y. Guowei, C. Meiru, H. 
Darren and R. Jefferson, "Redroid: A 
Regression Test Selection Approach for 
Android Applications," in Proceedings of 
the International Conference on Mobile 
Software Engineering and Systems, 
Austin, Texas, USA, 2016.  

[5]  A. Pilgun, O. Gadyatskaya, S. 
Dashevskyi, Y. Zhauniarovich and A. 
Kushniarou, "DEMO: An Effective 
Android Code Coverage Tool," in 
Proceedings of the 2018 ACM SIGSAC 
Conference on Computer and 
Communications Security , Toronto, 
Canada — October 15 - 19, Pages 2189-
2191, 2018.  

[6]  A. Pilgun, "pilgun/acvtool," Oct 2018. 
[Online]. Available: 
https://github.com/pilgun/acvtool. 
[Accessed 9 March 2019]. 

[7]  A. Pilgun, O. Gadyatskaya, S. 
Dashevskyi, Y. Zhauniarovich and A. 
Kushniarou, "Fine-grained Code 
Coverage Measurement in Automated 
Black-box Android Testing," eprint 
arXiv:1812.10729, December 2018. 

[8]  S. Puspaningrum, S. Rochimah and J. 
Akbar, "Functional Suitability 
Measurement using Goal-Oriented 
Approach based on ISO/IEC 25010 for 
Academics Information System," Journal 
of Information Systems Engineering and 
Business Intelligence, vol. 3, no. 2, pp. 68-



Informatica Economică vol. 23, no. 4/2019  87 

DOI: 10.12948/issn14531305/23.4.2019.07 

74, 2017 October.  
[9]  M. N. Sari and M. Ali, "The Suitability of 

Native Application for University E-
Learning Compared to Web-Based 
Application," International Journal of 
Science and Research (IJSR), vol. 4, no. 1, 
2015.  

[10]  A. Olajide and O. Adebola, 
"Performance Evaluation of Native and 
Hybrid Android Applications," 
Communications on Applied Electronics 
(CAE), vol. 7, no. 16, 2018 May.  

[11]  S. Wicaksono, D. Firdausy and M. 
Saputra, "Usability Testing on Android 
Application of Infrastructure and Facility 
Reporting Management Information 
System," Journal of Information 
Technology and Computer Science, vol. 3, 
no. 2, pp. 184-193, 2018.  

[12]  S. Meskini, B. Nassif and L. Capretz, 
"Reliability Models Applied to Mobile 
Applications," in IEEE 7th International 
Conference on Software Security and 
Reliability-Companion (SERE-C), 
Gaithersburg, M.D., USA, 2013.  

[13]  G. Kaur and K. Bahl, "Software 
Reliability, Metrics, Reliability 
Improvement Using Agile Process," 
IJISET - International Journal of 
Innovative Science, Engineering & 
Technology, vol. 1, no. 3, May 2014.  

[14]  I. Khokhlov and L. Reznik, "Data 
Security Evaluation for Mobile Android 
Devices," in 20th Conference of Open 
Innovations Association (FRUCT), St. 
Petersburg, Russia, 3-7 April 2017.  

[15]  F. Horváthy, S. Bognáry, T. Gergelyy 
and R. Ráczy, "Code Coverage 
Measurement Framework for Android 
Devices," Acta Cybernetica 21, p. 439–
458, 2014.  

[16]  M. Linares-Vasquez, C. Bernal-
Cardenas, K. Moran and D. Poshyvanyk, 
"How do Developers Test Android 
Applications?" in International 
Conference on Software Maintenance and 
Evolution ( ICSME ), Shanghai, China, 
17-22 Sept., 2017.  

[17]  C.-Y. Huang, C.-H. Chiu, C.-H. Lin 
and H.-W. Tzeng, "Code Coverage 

Measurement for Android Dynamic 
Analysis Tools," in IEEE International 
Conference on Mobile Services, New 
York, NY, USA, 27 June-2 July, 2015.  

[18]  "EMMA: a free Java code coverage 
tool," [Online]. Available: 
http://emma.sourceforge.net/. [Accessed 
19 March 2019]. 

[19]  P. Lantz, "pjlantz/droidbox," [Online]. 
Available: 
https://github.com/pjlantz/droidbox. 
[Accessed 19 March 2019]. 

[20]  "UI/Application exerciser Monkey," 
[Online]. Available: 
http://developer.android.com/tools/help/
monkey.html. [Accessed 19 March 2019]. 

[21]  W. Wang, D. Li, W. Yang, Y. Cao, Z. 
Zhang, Y. Deng and T. Xie, "An 
Empirical Study of Android Test 
Generation Tools in Industrial Cases," in 
ACM/IEEE International Conference on 
Automated Software Engineering, 
Montpellier, France — September 03 - 
07,, 2018.  

[22]  "honeynet/droidbot," [Online]. 
Available: 
https://github.com/honeynet/droidbot. 
[Accessed 19 March 2019]. 

[23]  "ELLA: A Tool for Binary 
Instrumentation of Android Apps," 
[Online]. Available: 
https://github.com/saswatanand/ella. 
[Accessed 3 March 2019]. 

[24]  A. MacHiry, R. Tahiliani and M. Naik, 
"Dynodroid: An Input Generation System 
for Android Apps," in Joint Meeting on 
Foundations of Software Engineering, 
Saint Petersburg, Russia — August 18 - 
26, 2013.  

[25]  JesusFreke, "smali/backsmali. 2018.," 
JesusFreke/smali, 2018. [Online]. 
Available: 
https://github.com/JesusFreke/smali. 
[Accessed 10 March 2019]. 

[26]  D. Mihail-Vaduva, "Android App 
Code Coverage," in Proceedings of the 
18th International Conference on 
Informatics in Economy (IE 2019), pp. 
351-358, , Bucuresti, 30-31 May 2019, 
ISSN 2284-7472.  



88   Informatica Economică vol. 23, no. 4/2019 

DOI: 10.12948/issn14531305/23.4.2019.07 

Dinu MIHAIL-VĂDUVA has graduated the Faculty of Economic Cybernetics, 
Statistics and Informatics of the Bucharest Academy of Economic Studies in 
2010. He received an alumnus achievement award in 2012 of the Informatics 
Economics Master affiliated to the Bucharest University of Economic Studies. 
Starting with 2017 he was admitted to the PhD student at the Doctoral School of 
The Bucharest University of Economic Studies, Economic Informatics domain 

for his PhD thesis proposal involving educational systems based on mobile technologies. 
Between 2016 and 2017 he finished with a high school diploma postgraduate training programs 
named Psychological, Pedagogical and Educational skills training, level I and II, connected 
with a particular branch of the Bucharest University of Economic Studies. Furthermore, he 
graduated classes between 1984 and 1989 with a bachelor degree of the Faculty of Technology 
for Chemistry of the Polytechnic Institute of Bucharest towards specialization concerning 
Inorganic Chemistry Engineering. Currently he is working as a software analyst within the 
Department of Information Technology at the Regia Autonomă “Monitorul Oficial” from 
Bucharest and he is using Oracle database with APEX technology correlated with specific 
software languages for intranet projects development. His main scientific preoccupation is 
heavily orientated towards domains situated at the interface between education as a primarily 
economic and social activity and the most recent software technology. 


