
Informatica Economică vol. 22, no. 4/2018 89

DOI: 10.12948/issn14531305/22.4.2018.08

Network Anomaly Detection by Means of Machine Learning:

Random Forest Approach with Apache Spark

Hesamaldin HAJIALIAN1, Cristian TOMA2

The Bucharest University of Economic Studies, Tehran, Iran

The Bucharest University of Economic Studies, Bucharest, Romania

hesamsheva7@gmail.com, cristian.toma@ie.ase.ro

Nowadays the network security is a crucial issue and traditional intrusion detection systems

are not a sufficient way. Hence the intelligent detection systems should have a major role in

network security by taking into consideration to process the network big data and predict the

anomalies behavior as fast as possible. In this paper, we implemented a well-known supervised

algorithm Random Forest Classifier with Apache Spark on NSL-KDD dataset provided by the

University of New Brunswick with the accuracy of 78.69% and 35.2% false negative ratio.

Empirical results show this approach is well in order to use for intrusion detection system as

well as we seeking the best number of trees to be used on Random Forest Classifier for getting

higher accuracy and lower cost for the intrusion detection system.

Keywords: Random Forest, Network Security, Anomaly Detection, NSL-KDD, Apache Spark,

Machine Learning, Intrusion Detection Systems (IDS)

Introduction

Cyber-attacks in contrast with past have

changed and threat the valuable information in

financial, commerce, military, and industrial

networks. The intrusion detection system

(IDS) has a special place for preserving net-

work from anomaly behaviors, a network se-

curity system for detecting vulnerability ex-

ploits against target computer or application

[1]. There are two types of IDS: Network-

based systems, Host-based systems. The net-

work-based, monitoring system or systems on

the network and determine this network traffic

is an intrusion or acceptable but in the other

hand, the Host-based systems monitoring on

the system and examine the activity is an in-

trusion or not [2]. The methodology for de-

tecting incidents are Anomaly-based detec-

tion, Signature-based detection, and Stateful

protocol analysis. The Anomaly-based detec-

tion considering the definitions of normal ac-

tivities and based on that determine this par-

ticular kind of activity is a deviation or not,

this kind of methodology is very useful for de-

tecting unknown activities [3]. Even with this

situation, the cyber-attacks can penetrate in

networks so the need for intelligent systems in

order to decrease the cyber-attacks threats are

increased and the old approach is not the best

way anymore. Many recent studies have fo-

cused on to apply machine learning algo-

rithms to improve the intrusion detection sys-

tems, the central issue in these studies is to

evaluate the variant machine learning algo-

rithms on datasets in order to identify their

performance that which algorithms are more

efficient in order to use in intrusion detection

systems, upgrade their performance and make

them more intelligent and also process fast as

much as possible to investigate the anomalies.

In this paper, we aim to propose a framework

using Apache Spark the lightening-fast clus-

tering and engine for big data processing in

order to be used for anomaly detection in in-

trusion detection systems. In this part we re-

view the related works, Farnnaz and Jabbar

[4] used data mining on NSL-KDD by Weka

software and evaluated the Random Forest

model for detecting attacks and normal behav-

ior, the proposed model was efficient with low

false alarm rate. Kumari et al. [5] discussed

implementing a K-mean model in order to de-

termine and clustering anomalies in network

traffic with Spark streaming on Cloudera vir-

tual machine by streaming K-means algorithm

in real-time. Rettig et al. [6] introduced a new

system based on Pearson correlation and rela-

tive entropy for online anomaly detection over

big data streams builds on Apache Spark, their

1

90 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.4.2018.08

studies show Pearson correlation is best-

suited for detecting abrupt changes while the

relative entropy is well-suited for detecting

gradual changes. Sommer and Paxon [7] dis-

cussed the challenges of applying machine

learning algorithms in order to find anomaly

detection and they proposed guidelines for

overcoming these challenges, they argued the

capabilities and limitation from an operational

point of view is important. Lee and Stolfo [8]

outlined a data mining framework for intru-

sion detection, first they analyzed dataset and

feature extraction then used a classification al-

gorithm to compute the detection model, the

experimental results were done on DARPA98

dataset. Bhuyan and Kalita [9] provided the

structural overview of various facts of anom-

aly-based network intrusion detection also

discussed the detection strategy and evalua-

tions and presented various detection meth-

ods, strategy, and tools. Aggarwal and Sharma

[10] analyzed KDD dataset with four classes

Basic, Content, Traffic, and Host by means of

Weka software in order to categorize all fea-

tures and also the main target was to improve

detection rate and false alarm rate by simulat-

ing Random Tree algorithm. In related re-

search, some of them did not use Apache

Spark for training, testing and detecting intru-

sion as fast as possible and some of them did

not use Random Forest classifier for intrusion

detection or just it was a survey about the tools

or methods using in intrusion detection. In our

research, the focus is to use Random Forest

classifier algorithm by Apache Spark in order

to compute huge datasets as fast as possible

then train and test the algorithm on NSL-KDD

dataset and evaluate this proposed approach

for intrusion detection systems, also the main

question in this research is how many trees

should be used? For Random Forest classifier

in this particular situation.

2 Problem Formulation

The objective of the article is to propose the

model for intrusion detection with Random

Forest Classifier algorithm by Apache Spark

and also answer this question: how many trees

should be used for getting the most accuracy

in this case for detecting the anomalies? The

acquired dataset is NSL-KDD from the Uni-

versity of New Brunswick improved version

of KDD99 [11] dataset. This dataset is in-

cluded by many intrusions simulated in the

military network environment and also pub-

licly accessible. The key outcome of the cur-

rent article is to propose a model capable of

detecting and predicting intrusions in the net-

work area with high accuracy and low cost.

The results also indicate the suggested amount

for the number of trees in the Random Forest

for detecting intrusions. By obtaining such

data we could have a concrete and scalable

model with high accuracy along with high-

speed processing and low cost, also tuned and

combined multiple algorithms just in a single

step. In the reminder of this paper, first we cre-

ate our model based on Random Forest Clas-

sifier by ML Pipeline component then evalu-

ating the model after that investigate the Ran-

dom Forest Classifier with various number of

trees in order to identify how many trees are

proper for our model to get best accuracy and

cost for detecting intrusions or anomalies in

the network via Apache Spark.

2.1 Random Forests

Random Forest algorithm is a part of tree-

based classification algorithms and one of the

most successful machine learning models, this

algorithm is based on the ensembles of deci-

sion trees. The main concept of this algorithm

is to increase the accuracy of the decision tree,

in order to achieve this goal chooses the ran-

dom subspaces of the features and build mul-

tiple trees for the randomness and this ap-

proach generalize and improve the classifica-

tion then in order to predict a particular class

aggregates the votes of tree and the class with

the most votes is the prediction result. Be-

cause this algorithm uses multiple decision

trees reduce the overfitting and it does not

need any feature scaling and also could recog-

nize the non-linearities features and feature in-

teraction also it supports binary, multiclass

classification and regressions both categorical

and continuous features. The training of each

tree doing separately, so could be done in par-

allel and also combining the predictions of

Informatica Economică vol. 22, no. 4/2018 91

DOI: 10.12948/issn14531305/22.4.2018.08

each tree reduces the variance of the predic-

tions and improving the predictions on the test

data [12] [13].

2.2 NSL-KDD

The NSL-KDD dataset [14] is an improved

version of the KDD’99 dataset. They solved

the inherent problems of KDD’99, they

cleaned dataset from the redundant or dupli-

cated information in training data in order to

avoid any biasing toward the frequent records

also the duplicated records do not exist in the

proposed test dataset that will affect the per-

formance of prediction and not biasing to-

wards the methods have better detection in

frequent records. Another feature of this da-

taset is the test dataset and training dataset

have the reasonable number of records that

causes to have consistent and comparable re-

sults between different learning algorithm and

also we do not need to make small portion or

cross-validation or bagging in our training da-

taset in order to evaluate our models so we

could run our experiments on complete train

and test dataset also the selected records of

different level group has the inversely propor-

tional relation with the number of records in

the original KDD99 dataset which help us to

have more efficient and accurate evaluation

for different machine learning algorithm [15].

3. Problem Solution

In this section, we discuss the implementa-

tion of the anomaly detection model or

framework in the network environment based

on the Random Forest Classifier and also in-

vestigate the best number of trees for the al-

gorithm based on the cost and accuracy indi-

cators also the easiness of the designing and

speed of the computation are very important.

Therefore, to meet these requirements, the

Apache Spark is selected for creating and

proposing such a model with the aforemen-

tioned criteria in order to detect anomalies.

Apache Spark [16] is an engine for large-scale

big data and lightning-fast clustering-compu-

ting framework which combined of SQL,

streaming and complex analytics and included

with libraries; SQL and DataFrames for struc-

tural data analyzing and processing, Spark

Streaming for real-time streaming jobs pro-

cessing and fault-tolerant, ML and MLlib for

machine learning tasks that is 100x faster than

MapReduce because of high-quality algo-

rithms and excels better in iterative computa-

tions and also GraphX for graph computing.

Apache Spark works interactively with vari-

ous shells as Python, Java, Scala, SQL and

also runs in various data sources as HDFS,

Cassandra, Apache Hive and etc. Apache

Spark has a concept the ML Pipeline that uni-

forms multiple algorithms on top of the Data-

Frames. The ML library represents the Pipe-

lines such a workflow which consists of mul-

tiple stages. Hence by using this approach we

could create models for anomaly detection

easier and combine various algorithms just in

a single pipeline, so it has a great effect on the

performance of creating the models. In this

study, the experiments are executed on the

Toshiba Satellite L505-13x with Intel Core i3

2.13GHz, 8GB of RAM on Windows 7 64-bit

OS and also the version of Apache Spark is

2.1.2 and Hadoop 2.7 with Python3 kernel,

The Apache Spark ran with 2 worker threads

on two cores locally.

4. Proposed Model

In this section, we present the workflow of the

model based on the Apache Spark and evalu-

ate the model with different evaluation met-

rics after that based on the model we had, in-

vestigating that how many trees needed for

this model to have better accuracy? The ex-

periment is done on the various number of

trees in order to have a better conclusion.

4.1 Anomaly Detection Framework

Figure 1 shows the workflow of the proposed

model. The training network traffic dataset

(train NSLKDD.csv) with 14MB size is read

by Apache Spark then the 42 selected features

are considered for creating and implementing

the Random Forest Classifier Algorithm; the

two key values for the algorithm maxBins and

numTrees are set 70 and 100, respectively.

92 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.4.2018.08

Fig. 1. Workflow of Model

The reasons are that the diff_srv_rate column

has more than 70 distinct values and for the

number of trees Oshiro and et al. [17] sug-

gested that a ranged number of 64 to 128 are

good in big data with great number of attrib-

utes to get the balance results for memory con-

suming and also the cost of processing time.

So we chose the 100 in order to make the ideal

anomaly detection model. As can be seen in

Figure 1 in order to test the detection model,

we need the separate test dataset to get more

confident and accurate results. So the testing

network traffic data (about 3MB) is read by

Apache Spark and after that, the Random For-

est algorithm is implementing on the test Da-

taFrames to get the results. The Random For-

est approach in this study is based on the bi-

nary classification so the results also split up

to the normal and attack groups. When the

model is ready, the analysis of model or

framework is essential to elicit that the model

is acceptable for use in intrusion detections or

not?

4.2 Analysis of Empirical Results

The evaluation of the experimental results is

the most important part, in order to see how

the performance of the detection model is, in

this study, we considered the results in binary

classification; attack and normal classes. So in

order to evaluate the model we used metrics,

these metrics are TPR, TNR, FPR, and FNR.

TPR stands for true positive ratio and also

called the sensitivity or recall and shows in

this study the attack is truly considered as an

attack [18]. TNR stands for true negative ratio

also called specificity in this study shows the

ratio of normal behavior is considered as nor-

mal. FPR stands for false positive ratio and in

this study considered as the attacks considered

as normal behavior. FNR stands for the false

negative ratio in this study shows the normal

behavior is considered as an attack. Based on

the above the formulas are [18] [19]:

TP
Sensitivity

TP FN

 (1)

TN
Specificity

TN FP

 (2)

FP
FPR

FP TN

 (3)

FP
FNR

FP TP

 (4)

where:

TP = number of attack label is predicted as

attack;

TN = number of normal label is predicted as

normal;

FP = number of normal label is predicted as

attack;

FN = number of attack label is predicted as

normal.

Table 1 shows the confusion matrix of the

model. In addition, the accuracy, area under

Informatica Economică vol. 22, no. 4/2018 93

DOI: 10.12948/issn14531305/22.4.2018.08

ROC curve, area under the precision-recall

curve, test error, F1-Score, training time and

testing time according to Pipeline approach

also calculated in order to have stronger eval-

uations.

Table 1. Confusion Matrix of Model

Classes of the traffic packets Predicted classes

attack normal

Actual classes attack 0.647 0.352

normal 0.028 0.971

The accuracy is the most important metric in

the evaluation that says the correctness ratio

of predictions. The Area under ROC curve

(AUC) measures the performance or accuracy

of the test, in this case, differentiate the attacks

from normal behaviors [20] [21]. The Area

under precision-recall curve shows the suc-

cess of the prediction with a concentration on

the attacks [22]. F1-score shows the weighted

average of the recall and precision and also

comparing those, to each other [23]. The for-

mulas of the above-mentioned metrics are

[18]:

TP TN
Accuracy

TP TN FP FN

 (5)

1

0

()
TP FP

AUC d
P N

 (6)

1

0

()
TP TP

AUPRC d
TP FP P

 (7)

2

2

(.)
() (1).

(.)

precision recall
F

precision recall

 (8)

TP
Precision

TP FP

 (9)

where:

AUC=area under ROC curve;

P=sum of true positive and false negative;

N=sum of true negative and false positive;

AUPRC=area under precision-recall curve;

β=weight of precision;

Recall=true positive ration;

TP, TN, FP, and FN are same as previous ex-

planations.

Table 2 shows the results of the aforemen-

tioned metrics for Random Forest Classifier

algorithm.

Table 2 Experimental Results

Algorithm Accuracy (%) AUC (%) AUPRC (%) F1 (%) Precision (%)

Random

Forest

78.69 81 91 78.49 96.73

Listing 1 shows the sample code to run String-

Indexer, VectorAssembler, and Random-

Forest Classifier, at the end put them all in the

Pipeline. The StringIndexer algorithm is in-

dexing string column’s values in order to in-

clude them in our features as input data for

creating Random Forest model, VectorAs-

sembler assembling the all column’s values in

one vector and create a feature column. Ran-

dom Forest Classifier needs the feature col-

umn that will be what we created on the Vec-

torAssembler and also the label column of the

dataset, in this study, the labels are normal and

attack behavior, the number of trees is 100 and

Pipeline which create a workflow for our al-

gorithms.

94 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.4.2018.08

Listing 1 Sample of Code
 //StringIndexer Algorithm

 StringIndexer(inputCol=k, outputCol=’outputColumn_pip’, handleInvalid=’error’)

 //VectorAssembler Transformer

 VectorAssembler(inputCol=[‘duration’,..], outputCol=’features’)

 //IndexToString Algorithm

 IndexToString(inputCol = 'prediction', outputCol='originalLabel', labels=pre-

dictIndexer.labels)

 //RandomForest Classifier Algorithm

 RandomForestClassifier(featuresCol='features', labelCol='attack_normal_index',

numTrees=100

 //ML Piplines

 pipeline = Pipeline(stages= ‘StringIndexer’, ‘VectorAssembler’, ‘RandomForest’,

‘IndextToString’)

 model = pipeline.fit(train data)

 predictions = model.transform(test data)

It can be seen from Listing 1 that ‘k’ in String-

Indexer algorithm is the columns of strings

that we want to index them in order to enter

them in for training and also testing calcula-

tions, the handleInvalid set to error if the var-

iable of training dataset does not exist in the

testing dataset will raise an error. The index-

tostring algorithm returns the original labels

of indexed results based on what the StringIn-

dexer conducted for indexing the string values

of the label column in NSL-KDD. Random

forest based on the feature column and the in-

dexed label column training dataset and after

that make predictions with 100 number of

trees. The Pipeline will create the workflow of

the algorithm and the implementation done

based on the ordering of passed variables that

it means first the StringIndexer, second Vec-

torAssembler, third RandomForest, fourth In-

dexToString and then the model training on

the training dataset after that make a predic-

tion on the testing dataset. Kato and Klyuev

[24] proposed the anomaly detection system

with Apache Spark and Hadoop and by use of

Hive table and unsupervised learning algo-

rithm like K-means and also GMM algorithm,

this system capable of managing and detecting

an enormous dataset about 90 GB quickly

with low rate of false alarm and high value

about 86% of accuracy. Gupta and Kulariya

[25] proposed a framework for intrusion de-

tection system based on Apache Spark, they

used feature selections as correlation based

and chi-squared with different algorithms

such as Random Forest, Logistic Regression

and other algorithms and evaluated the perfor-

mance of each algorithm on NSL-KDD and

KDD’99. In Table 3 and Table 4 we compared

their Random Forest results on NSL-KDD

with our results. Table 3 shows the accuracy

of their framework is better also the sensitivity

or true positive ratio is also higher than our

proposed model but the specificity of the pro-

posed model is higher than their model.

Table 3 Proposed model vs. Correlation based Results

Methods Accuracy

 (%)

Sensitivity

 (%)

Specificity

 (%)

Our Results 78.69 64.76 97.11

 [25] 82.35 72.72 95.07

Table 4 shows the proposed model’s training

time is more than the [25] proposed frame-

work, the reasons are: we used the ML Pipe-

line so the pipeline is included by 4 algorithms

and 100 trees for Random Forest Classifier

Informatica Economică vol. 22, no. 4/2018 95

DOI: 10.12948/issn14531305/22.4.2018.08

but for their model, they did not mention how

many trees are used and also the training and

prediction time just including the Random

Forest algorithm stage.

Table 4 Proposed Model Training and Testing Time

 Training Time Prediction Time

Our Results 56.1 0.59

 [25] 6.15 1.38

The prediction time of our model is less than

their model and the reasons are: Runtime

checking and topological order (DAG Pipe-

lines) [26]. The main differences of our study

with [25] are:

 We created our model with ML Pipeline.

 We did not use the feature selection on

NSL-KDD because this model is im-

proved and the records are selected logi-

cally in both: testing and training dataset

and also the Random Forest has the ability

to reduce overfitting and capture non-lin-

earities.

 Our study focus is on binary classification

and we used Random Forest binary classi-

fication with 100 trees for creating and

testing mode but they did not mention

what are their details.

 Also for strong evaluation, we evaluated

our algorithm with more metrics such as

AUC, F1, and AUPRC.

 Also in the reminder of this study, we are

looking for the answer of this question

how many trees for Random Forest?

Based on cost, memory consuming and

accuracy.

4.3 How many trees for Random Forest?

Random Forest Classifier algorithm takes

some parameters, but the number of trees has

important role for creating a model and affect

the accuracy of the model, at the other hand

the accuracy for intrusion detection is critical

especially for important places so in this study

we trying to find the number of trees that ex-

cept the accuracy also considering the pro-

cessing time and memory consuming. In order

to find the answer, Oshiro and et al. [17] sug-

gested that the range between 64 and 128 is

ideal in order to get a good balance for time

and memory consuming. Their experiments

are done on 29 datasets and they concluded

from 128 onwards there are no main differ-

ences even with a great number like 2048 or

4096. They also found the AUC has the in-

versely proportional relation with the doubled

number of Random Forest trees.

Based on these experiments and their results

we implement Pipelined Random Forest Clas-

sifier with a different number of trees in order

to find the best accuracy, cost of processing

time and memory consuming.

Table 5 Empirical Results of Different Number of Trees

 Trees 128 64 32 16 8

Accuracy

 (%)

77.90 78.69 81.75 78.54 79.36

 Time

 (s)

58.37 37.41 26.05 22.86 21.07

As can be seen from Table 5 when the number

of trees being halved the accuracy is increased

but at 16 the accuracy is decreased suddenly

then at 8 trees is increased, it could be consid-

ered that the number of trees between 32 and

16 could be the best values, also the experi-

ments are done on other numbers of trees as

50, 35, 42, 21, 30, 24, 40, 48, and 72. respec-

tively the results of accuracy are 78.13%,

78.97%, 79.05%, 79.24%, 79.75%, 80.67%,

96 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.4.2018.08

78.19%, 79.73%, and 78.38%. So as can be

seen if we want to have both criteria the time

and the accuracy for choosing the best value,

32 number of trees is the result but if the cost

of time and memory consuming are more im-

portant the 8 trees could be a best one. The

worst value is 128 especially in the time and

also with this greater number of trees, the ac-

curacy is the worst one so if we choose the

number of trees without logic just by increas-

ing the number of trees, it could have critical

damages on our anomaly detection model.

5. Conclusion

In this article, we proposed an intelligent

model or framework based on the Random

Forest Classifier for fast and precise anomaly-

based intrusion detection system via Apache

Spark. We used NSL-KDD train and test da-

taset from the University of New Brunswick

respectively for training and testing the

model. The model created with the ML Pipe-

line that decreases the prediction time even

with more algorithms, based on the results and

also it allows us to implement multiple algo-

rithms just in the single step. The results show

the high accuracy, low false alarm, low false

negative and high precision which is promis-

ing for applying in anomaly detection sys-

tems. The second conclusion is that the num-

ber of trees in Random Forest Classifier has a

direct impact on the performance and the ac-

curacy of the Random Forest based model

which in this study the 32 trees could be the

best number in order to have more accuracy,

also low cost and memory consuming for ap-

plying in anomaly detection systems.

Acknowledgment

This work is based on my dissertation thesis

from Bucharest University Economic Studies,

IT&C Security Master program, which has

not been traditionally published.

References

[1] D. Elson, "Intrusion Detection, Theory and

Practice," Symantec, 27 Mar 2000.

[Online]. Available: https://www.syman-

tec.com/connect/articles/intrusion-detec-

tion-theory-and-practice.

[2] T. Bradley, "Introduction to Intrusion De-

tection Systems (IDS)," LifeWire, 12 Feb-

ruary 2018. [Online]. Available:

https://www.lifewire.com/introduction-

to-intrusion-detection-systems-ids-

2486799.

[3] "What is IDS and IPS?," Juniper Net-

works, [Online]. Available:

https://www.juniper.net/us/en/products-

services/what-is/ids-ips/.

[4] N. Farnaaz and M. A. Jabbar, "Random

Forest Modeling for Network Intrusion

Detection System," Procedia Computer

Science, vol. 89, p. 213 – 217, 2016.

[5] R. Kumari, Sheetanshu, M. K. Singh, R.

Jha and N. Singh, "Anomaly Detection in

Network Traffic using K-mean cluster-

ing," in Recent Advances in Information

Technology (RAIT), Dhanbad, 2016.

[6] L. Rettig, M. Khayati, P. Cudr´e-Mauroux

and M. Pi´orkowski, "Online Anomaly

Detection over Big Data Streams," in

IEEE International Conference on Big

Data (Big Data), Santa Clara, 2015.

[7] R. Sommer and V. Paxson, "Outside the

Closed World: On Using Machine Learn-

ing for Network Intrusion Detection," in

IEEE Symposium on Security and Pri-

vacy, Berkeley/Oakland, 2010.

[8] W. LEE and S. J. STOLFO, "A Frame-

work for Constructing Features and Mod-

els for Intrusion Detection," ACM Trans-

actions on Information and System Secu-

rity (TISSEC), vol. 3, no. 4, p. 227–261,

2001.

[9] M. H. Bhuyan, D. K. Bhattacharyya and J.

K. Kalita, "Network Anomaly Detection:

Methods, Systems and Tools," IEEE

Communications Surveys & Tutorials,

vol. 16, no. 1, pp. 303 - 336, 2013.

[10] P. Aggarwal and S. K. Sharma, "Analysis

of KDD Dataset Attributes - Class wise

For Intrusion Detection," Procedia Com-

puter Science, vol. 57, p. 842 – 851, 2015.

[11] "KDD Cup 1999 Data," [Online]. Avail-

able: http://kdd.ics.uci.edu/data-

bases/kddcup99/kddcup99.html.

[12] "Random forest classifier," Apache

Spark, [Online]. Available:

https://spark.apache.org/docs/latest/ml-

Informatica Economică vol. 22, no. 4/2018 97

DOI: 10.12948/issn14531305/22.4.2018.08

classification-regression.html#random-

forest-classifier.

[13] T. K. Ho, "Random Decision Forest," in

Proceedings of the Third International

Conference on Document Analysis and

Recognition, Montreal, Que., 1995.

[14] "NSL-KDD dataset," Canadian Institute

for Cybersecurity (UNB), [Online]. Avail-

able: http://www.unb.ca/cic/da-

tasets/nsl.html.

[15] M. Tavallaee, E. Bagheri, W. Lu and A.

A. Ghorbani, "A Detailed Analysis of the

KDD CUP 99 Data Set," in IEEE Sympo-

sium on Computational Intelligence for

Security and Defense Applications, Ot-

tawa, ON, 2009.

[16] "Apache Spark," [Online]. Available:

https://spark.apache.org/.

[17] T. M. Oshiro, P. S. Perez and J. A. Bara-

nauskas, "How Many Trees in a Random

Forest?," in Machine Learning and Data

Mining in Pattern Recognition, New

York, Springer International Publishing,

2017, pp. 154-168.

[18] "Evaluation Metrics - RDD-based API,"

[Online].Available:

https://spark.apache.org/docs/lat-

est/mllib-evaluation-metrics.html.

[19] P. Pore, "How to evaluate a binary clas-

sifier," KDnuggets, April 2017. [Online].

Available: https://www.kdnug-

gets.com/2017/04/must-know-evaluate-

binary-classifier.html.

[20] "ROC curve analysis," MEDCALC®,

[Online]. Available: https://www.med-

calc.org/manual/roc-curves.php.

[21] K. Markham, "ROC curves and Area Un-

der the Curve explained," data school, 19

November 2014. [Online]. Available:

http://www.dataschool.io/roc-curves-and-

auc-explained/.

[22]"Precision-Recall," Sickit-learn, [Online].

Available: http://scikit-learn.org/sta-

ble/auto_examples/model_selec-

tion/plot_precision_recall.html.

[23] T. G. Tape, "The Area Under ROC

Curve," University of Nebraska Medical

Center, [Online]. Available:

http://gim.unmc.edu/dxtests/roc3.htm.

[24] K. Kato and V. Klyuev, "Development of

a network intrusion detection system us-

ing Apache Hadoop and Spark," in IEEE

Conference on Dependable and Secure

Computing, Taipei, 2017.

[25] G. P. Gupta and M. Kulariya, "A Frame-

work for Fast and Efficient Cyber Security

Network Intrusion Detection Using

Apache Spark," Procedia Computer Sci-

ence, vol. 93, pp. 824-831, 2016.

[26] "ML Pipelines," Apache Spark, [Online].

Available:

https://spark.apache.org/docs/latest/ml-

pipeline.html.

Hesamaldin HAJIALIAN has graduated the Faculty of Economic Cybernet-

ics, Statistics and Informatics of the Bucharest University of Economic Studies

in 2018. He holds a Master diploma in Information Security and his work fo-

cuses on Machine Learning in Cybersecurity especially Intrusion Detection

System (IDS) and Next-Generation Firewalls (NGFW).

Cristian TOMA has graduated from the Faculty of Cybernetics, Statistics and

Economic Informatics, Economic Informatics specialization, within Bucharest

University of Economic Studies in 2003. He has graduated from the BRIE mas-

ter program in 2005 and PhD stage in 2008. In present, he is associate professor

at Economic Informatics and Cybernetics Department and he is member in re-

search structures such as ECO-INFOSOC. Since the beginning - 2005 - he is

scientific secretary of IT&C Security Master Program from Bucharest Univer-

sity of Economic Studies and since 2006, he is in the editorial board of the SECITC – The Inter-

98 Informatica Economică vol. 22, no. 1/2018

DOI: 10.12948/issn14531305/22.4.2018.08

national Conference on Security for Information Technology and Communications and JMEDS

– Journal of Mobile, Embedded and Distributed Systems. His research areas are in: distributed

and parallel computing, mobile applications, smart card programming, e-business and e-pay-

ment systems, network security, computer anti-viruses and viruses, secure web technologies

and computational cryptography. He is teaching in Department of Economic Informatics and

Cybernetics, and IT&C Security Master program. He has published 3 books and over 50 papers

in indexed reviews and conferences proceedings.

