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Large classes of game theoretic problems seem to defy attempts of finding polynomial-time 

algorithms while analyzing large amounts of data.  This premise leads naturally to the possi-

bility of using efficient parallel computing implementations when seeking exact solutions to 

some of these problems. Although alpha beta algorithms for more than one-player game-tree 

searches show moderate parallel performance, this paper sets forth an alpha beta strategy en-

hanced with transposition tables in order to offer satisfactory speedups on high performance 

servers. When the access to the transposition tables is done in low constant delay time, the 

achieved speedups should approach the theoretical upper bounds of the code parallelism. We 

tested the strategy on a well-known combinatorial game. 
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Introduction 

High-performance parallel computing is 

being increasingly used in computational sci-

ence to solve large-scale algorithmically in-

tensive problems. Recent technological ad-

vances in processor development gave rise to 

a large range of unexpansive chips with tens 

or even hundreds of cores. These multi-core 

chips enhanced with simultaneous multi-

threading, dedicated fast access memory and 

manifold specific cores, promise additional 

performance and efficiency gains [1] [2], es-

pecially in processing computational science 

applications. 

Large classes of game theoretic problems 

seem to defy attempts of finding polynomial-

time algorithms [3-7], requiring super-poly-

nomial time algorithmic schemes and, 

thereby, being computationally intensive. Fur-

thermore, large quantities of data can poten-

tially be generated, analyzed and stored while 

exploring exponentially growing game trees.  

These premises lead naturally to the possibil-

ity of applying highly parallel computational 

implementations when aiming to find exact 

solutions for many game theory problems. We 

propose a speedup strategy to allow constant 

sum games computations to take full ad-

vantage of the parallelism and the efficient 

scheduling strategies implemented on these 

architectures [8] [9]. This way, we obtain fast 

and accurate sub-game utility estimations by 

scaling up the amount of required resources 

and accelerating the dissemination of interme-

diate results. 

This paper is organized as follows: section 2 

is devoted to presenting the underlying game 

theoretic concepts used in this research and re-

lated algorithmic complexity aspects. The 

speedup strategy for constant sum games is 

expounded in the third section. A case study 

together with its experimental plan is detailed 

in section 4. Results and conclusions are pre-

sented in sections 5 and 6. 

 

2 Overview of relevant Game Theory Con-

cepts 

The current section starts off by briefly restat-

ing the definitions of the main concepts used 

throughout the paper, and proceeds by ex-

pounding the underlying considerations on the 

algorithmic complexity of game equilibria 

computations. 

 

Brief Overview of underlying game theo-

retic Concepts 

A finite perfect-information game in exten-

sive form is defined as a tuple 𝐺 =
(𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢) where: 

 𝑁 is the finite set of rational players; 

 𝐴 is the set of possible actions of the play-

ers; 

 𝐻 is the set of choice nodes; 

 𝜒: 𝐻 →  2𝐴 is the choice function; 

1 
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 𝜌: 𝐻 → 𝑁 is the player function which in-

dicates player to perform the move at 

some given choice node; 

 𝜎: 𝐻 × 𝐴 → 𝐻 ∪ 𝑍 is the successor func-

tion. This function maps pairs of choice 

nodes and possible actions to other suc-

cessor terminal or choice nodes; 

 𝑢 = (𝑢1, … , 𝑢|𝑁|), where𝑢𝑖: 𝑍 → 𝑅 is a 

utility function for the player 𝑖 on the ter-

minal nodes 𝑍; 

 𝑍 is the set of terminal nodes in the game 

three. Each terminal node of the game 

tree has an 𝑁-tuple of payoffs, one for 

each player at the end of every possible 

play. 

Each player has a utility function defined for 

every game outcome. The rational players 

evaluate an outcome by its expected utility. 

Finite perfect-information sequential games 

are games in which the players take turns 

changing in defined moves the game configu-

ration so as to achieve deterministically de-

fined winning conditions. In these games, one 

player chooses his action before the others 

choose theirs. 

In constant sum games, the sum of players' 

payoffs is the same for any outcome. Thus, 

gains for a subset of players are always ob-

tained at the expense of the remaining partici-

pants. These games’ equilibria originate fre-

quently from mixed strategies associated with 

starkly conflicting interests. By normalizing 

each player’s payoff, constant sum games can 

always be represented as zero sum games 

where the total payoff is equal to zero.  

Constant sum games are frequently solved us-

ing the minimax theorem closely related to 

linear programming duality [10] and Nash 

equilibria. Thus, constant sum games equilib-

ria are often find through minmax strategies 

which aim for minimizing the possible loss for 

a worst case (maximum loss) scenario. Gener-

ally, a maximin strategy is different from a 

minimax one. Minimax is used in constant 

sum games to minimize the opponent's maxi-

mum payoff. In constant sum games the two 

strategies are interchangeable as minimizing 

the individual maximum loss equates maxim-

izing the minimum gain. 

In constant sum games of complete infor-

mation, minmax decision rules find subgame 

perfect Nash equilibria, i.e. offer strategy pro-

files representing a Nash equilibrium for any 

smaller game of the original game. Every fi-

nite game in extensive form has a subgame 

perfect equilibrium [11]. 

In these cases minimax provides a recursive 

method for finding subgame perfect equilibria 

through backward induction by considering 

the last actions of the game and calculating 

backwards the actions the final player should 

take in order to maximize her own utility. Sup-

posing that the last player does these actions, 

the previous players at their turn try to max-

imize theirs utilities and the process continues 

until the initial configuration of the game is 

reached. The set of the remaining strategies 

accounts for all subgame perfect equilibria for 

finite-horizon extensive games of perfect in-

formation [11]. 

 

Complexity of Computing Nash Equilibria  

Usually, computational problems pertain to 

one of the two following complexity classes: 

those which have a polynomial-time algo-

rithm – the complexity class P, and those 

whose proofs are verifiable in polynomial 

time by a deterministic Turing machine – the 

NP complexity class. The class P is contained 

in NP.  NP contains many other important 

complexity classes of problems. The hardest 

problems to solve are regrouped in its NP-

complete subclass. Their solutions are capable 

of dealing with any other NP problem in pol-

ynomial time. Papadimitriou [3] showed in 

1994 that computing a mixed Nash equilib-

rium in a game pertains to the PPAD complex-

ity class (Polynomial Parity Arguments on Di-

rected graphs). As a matter of fact, computing 

a Nash equilibrium is complete for the PPAD 

class of problems, that is, it is the hardest 

problem to solve in this complexity class. 

PPAD class is a subclass of TFNP [12] com-

plexity class (Total Function Nondeterminis-

tic Polynomial) which, at its turn, is a subclass 

of the complexity class FNP (the function 

problem extension of the problem class NP). 

NP is a class of decision problems, while FNP 

is the analogous class of function problems. 
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Figure 1 depicts the position of the PPAD sub-

class within the complexity class NP. 

 
Fig. 1. The nesting of the PPAD complexity 

class under P ≠ NP hypotheses 

 

Thus, computing Nash equilibria pertains, 

with some notable exceptions, to the NP-inter-

mediate class and require, thereby, computa-

tionally intensive algorithmic schemes exe-

cuted in super-polynomial time. 

 

Complexity of Minimax and Alpha Beta 

pruning Algorithms 

The minimax procedure is subject to combi-

natorial explosion, which makes it rather slow 

and ineffective when applied to high dimen-

sion problems. Therefore, it does not compute 

the real utility functions of the game players 

but rather some estimators of these. As the 

evaluation process is not performed in the 

proximity of leaf nodes, an “accurate” proxy 

of the utility function is used in order to decide 

the “best” moves to play in accordance with 

the confined perspective of the nearby hori-

zon. The utility function, in this context, as-

sesses the goodness of specific game configu-

rations for a given player. It can take into ac-

count a large number of factors and the rela-

tions existing amongst them. 

Although the minimax enhancements can sig-

nificantly reduce the branching factor, the 

number of overall utilities to be computed on 

subsequent levels goes up exponentially as the 

branching game tree keeps growing. Thus, the 

minimum and maximum aggregate utilities 

should be computed over tremendously large 

sequences of game configurations. 

For constant depth d searches in the game tree 

and average branching factors of b the maxi-

mum number of nodes to be evaluated is of 

order O(bd). Through alpha–beta pruning [13] 

branches of the game tree can be eliminated in 

the utility computational process. For optimal 

or nearly optimal move orderings (the best 

moves are regularly searched first), the num-

ber of leaf nodes to be evaluated is of order 

O(bd/2).Therefore, in the reduced game tree 

the search can go twice as deep as in the ordi-

nary minimax algorithm while using the same 

amount of computational resources [13]. 

Whereas alpha-beta pruning is extremely effi-

cient in minimizing the search tree, there are 

also many other techniques stemmed from ar-

tificial intelligence which can be applied to 

further reduce the search space of the prob-

lem. Among those refinements we can cite al-

pha-beta enhancements, transposition tables, 

null move pruning and late move reductions. 

In some cases, they can further reduce the ef-

fective branch factor below the value of 3 and, 

more rarely, even below 2. 

 

3 The computational Strategy 

The strategy we propose relies mainly upon 

using the largely known minimax optimiza-

tion of alpha beta pruning, in conjunction with 

low latency intermediate results repositories, 

i.e. transposition tables [14][15], and a good 

granularity in the splitting process of the com-

putational tasks. 

The speedup strategy relies mainly upon low 

latency transportation tables which accelerate 

the searching process in the game tree. Trans-

position tables are very useful in performing 

perfect information games computations 

where all players fully apprehend the whole 

state of the game, as they apply memorization 

to the tree search by using dynamic program-

ming techniques. This way, we can keep track 

of the millions of positions analyzed up to a 

given point in time. 

In a large number of games, it is possible to 

attain specific game configurations in more 

than one way. These different move se-

quences enabling players to reach one same 

position, are called transpositions. After se-

quences of n consecutive moves, the combi-

natorial limit on the number of possible trans-

positions may usually reach an upper bound as 

large as (n!)2. In spite of the fact that some of 

these possible moves are obviously forbidden, 

there remains a large amount of positions that 
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may be explored multiple times. We prevent this problem by using transposition tables. 

 

 
Fig. 2. Taking advantage of the abundant computational resources of large multi-core servers 

while exploring the game tree 

 

Such tables are hash tables of game configu-

rations analyzed up to a certain depth. On en-

countering a new position, the program 

checks the table to see whether the position 

has already been analyzed; this can be done 

quickly, in expected constant time. If the table 

contains the value that was previously as-

signed to this position, then this value is used 

directly. If not, the value is computed and the 

new position is entered into the hash table. 

The strategy encompasses the following five 

aspects: 

 The division of the utilities computations 

of the game tree configurations into a rel-

atively high number of smaller tasks of 

order O(branching factor*nb. of compu-

ting nodes) in order to take full advantage 

of the parallelism and computational dis-

tribution; 

 The implementation of the game tree as a 

set of files gradually built up by parallel 

processes performing time-costly inter-

mediate sub-games computations. A 

shared file representation can tremen-

dously enhance parallel computation of 

the tasks. In this case I/O operations (cre-

ate, delete, modify, read and write) must 

be as fast as possible to assure the overall 

application performance and surmount 

tolerable processing latencies. We recom-

mend a low latency file set characterized 

by high speed and accurate communica-

tion amongst computing workers; 

 The usage of Alpha–beta pruning as opti-

mization of the minimax algorithm in or-

der to decrease the number of nodes to be 

evaluated. In our strategy the transporta-

tion table is a stored in a set of files. Such 

an implementation is helpful not only 

when seeking equivalent game configura-

tions. In the alpha-beta implementation, 

the search is optimal when the best suc-

cessor nodes are explored first. As the 

best move is not known as long as leaf 

leave levels are not reached, when using 

iterative deepening the best move found 

in the shallower search offers a good ap-

proximation of that and we store it in the 

transposition table as the best child of the 

node; 

 Read/Write/Update operations of game 

tree data files containing the intermediate 

utility results by parallel processes per-

forming the computational tasks. When 

intermediate results are computed/up-

dated, they should be stored right away in 

the shared game tree. Here, synchroniza-

tion methods are required in order to en-

sure consistency amongst the different 

physical supports. The data integrity is 

here of paramount importance and we 
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must take advantage of effective replica-

tion and failure detection mechanisms. 

Any breach of data integrity can lead to 

incorrect computing and, therefore, prob-

lems must be quickly detected; 

 A cache strategy of storing the data as the 

search space grows exponentially and, 

thereby, it may overpass the allocated 

memory capabilities. Thus, it can arrive 

that not all game positions can be stored. 

When the shared file physical size ap-

proaches some given threshold, rarely 

used positions are replaced with new ones 

as in classical cache mechanisms. The 

cache implementation might not be nec-

essary on some configurations offering 

virtually unlimited storage amounts.

 
Fig. 3. Outlook of one tree node utility estimation 

 

Using transposition tables may provoke erro-

neous results when past interactions in the 

game tree are not carefully considered. Prob-

lems could arise in games where the history of 

certain positions may reveal essential. For in-

stance, in some board games such as chess, 

players may play two specific moves at a time 

only if the pieces involved had not previously 

moved in the game. Solutions to this type of 

problems generally involve adding supple-

mental information as part of the hashing key. 

Other examples are repetition draws when 

some positions repeat themselves during the 

course of the game leading to a draw outcome. 

Repetition of past positions can be prevented 

by storing history information in the nodes of 

the transportation table although this could be 

inefficient from a computational perspective. 

 

4 Appling the computational Strategy to a 

well-known combinatorial Game 

In this section we start off by offering a very 

succinct general description of the game on 

which we tested the effectiveness of the 

speedup computational strategy. Then, we 

present the testing strategy and some coding 

aspects. 

 

General game Description 

We considered testing the strategy on the In-

ternational Draughts combinatorial game. A 

perfect information two-player game over a 

game tree, as international draughts, can be 

represented as an extensive form game over a 

specific game tree with terminal nodes having 

payoffs for win/draw/lose outcomes. 

 

 
Fig. 4 Initial position 
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International draughts is one of the variants of 

draughts, a two-player game played on a 10 by 

10 board with alternating black and white 

squares. In conventional diagrams the board is 

displayed with the white pieces at the bottom 

and black at the top as in Figure 4. 

 The two players are at opposite sides, 

with 20 pieces each, white for one player 

and black for the other.  

 The game is played on the black squares 

of the board. Thus, there are 50 active 

cases. The longest diagonal joining two 

corners of the board and including 10 

black squares, is referred to as the long 

diagonal. 

 Before starting a game, the 20 black and 

20 white pieces are arranged on the first 4 

rows of each player as can be seen in Fig-

ure 4. 

Without entering into much detail, the moves 

and captures abide by the following rules: 

 There are two types of pieces: ordinary 

pieces and crowned pieces (or kings);  

 The first move is always played by the 

white; 

 Opponents make moves alternately; 

 An ordinary piece must move forward, 

diagonally one square on an empty square 

in the next row; 

 When it reaches the last row, the piece be-

comes a king. For this, the piece is 

crowned by placing over a second piece 

of the same color; 

 A king must wait until the opponent has 

played at least once before taking action.  

A king moves backward or forward on 

successive free squares on the diagonal it 

occupies;  

 Opposing pieces must be captured when-
ever a piece (crowned or not) jumps over 
them; 

 The opposite pieces must be captured 

even though this would be disadvanta-

geous; 

 The game is won whenever either player 

has no pieces left; 

 A game is a draw if the two opponents do 

not have the possibility to win the game 

or board configurations repeat them-

selves. 

 

 
Fig. 5. Example of capturing of several black 

pieces by a white king 

 

A detailed list of the International Draughts 

game’s rules can be found in [16]. 

 

The evaluation Functions 

In the Draughts game case the utility function 

estimator is generally computed as a weighted 

average function. The different weighed vari-

ables are: the number of black and white 

pieces, the number of black and white 

crowned pieces and the disparity of pieces 

(the number of black pieces minus the number 

of white pieces, the number of black kings mi-

nus the number of white kings). 

In the implementation of the game-playing al-

pha-beta pruning algorithm, we used three dif-

ferent evaluation functions to estimate the 

utility (or the goodness) of specific board con-

figurations for each player. The evaluation 

functions were typically designed so as to in-

crease the speed of exploring the subsequent 

configurations tree. The functions were static 

in the sense that they analyze only board con-

figurations from a static perspective and do 

not explore possible subsequent moves. 

 

Board Encoding 

For a given configuration we represented each 

Draughts board using 6 double precision 64 

bit-boards. The first 2 double precision bit-

boards were used to indicate whether each cell 

is or not empty. The third and the forth bit-

boards were used to indicate the type of the 

piece (crowned or not crowned). The fifth and 

the sixth bit-boards were used to give the color 
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of the existing pieces (black or white). 

 

The testing Approach 

Our testing method made use of two non-hu-

man computing players playing against each 

other. One of the players employed a sequen-

tial algorithm while the other player had ac-

cess to parallel computational resources and 

implemented a solution in conformity with the 

recommended strategy.  

Two performance case studies were em-

ployed: 

 In the first case, both players had to find 

a move in a given amount of time. Here, 

we counted the number of tree nodes an-

alyzed by each player during the same 

time period; 

 In the second case, the players had to find 

the best move by exploring the tree up to 

some maximum depth. Here, we com-

pared the time amounts taken by the play-

ers to perform the equivalent complexity 

computations. 

In order to assess the importance of the I/O 

delay time to access the transposition table, 

we also artificially delayed each I/O operation 

and evaluated the performance loss under 

high, medium and slow latency conditions. 

 

5 Some experimental Results 

This section goes through several execution 

aspects observed while running the combina-

torial game. Some aspects are specific to this 

particular game, whereas others may apply to 

any constant sum game implementation. 

 

Observed average Branching Factor 

In our setting, there were in average around 7 

to 11 moves per position. Thus, adding an ad-

ditional level to the game tree roughly ex-

panded each leaf by the average branching 

factor of the game tree. The alpha-beta prun-

ing optimization reduced branching by factors 

ranging between 20 and 25 percent. This de-

creased the number of nodes to be evaluated 

and improved the overall computational 

speedup without any loss in result accuracy. 

We first explored the best moves configura-

tions in order to ensure good effectiveness in 

the pruning scheme. 

 

Speedup Measurements 

In this context, the speedup metric is the im-

provement factor as mode computational con-

tribute to decrease the running time. We meas-

ured the speedup factor of the algorithmic 

strategy by timing the execution for different 

parallelism levels (i.e. number of computing 

nodes, processes or threads). 

The speedup has the following power function 

form with a sub-unitary positive exponent:
qppspeedup )( . Here p stands for the paral-

lelism level and q for the discounting expo-

nent. The exponent can be estimated by a log-

log regression on the speedup data series, i.e.

 )log()log( pqspeedup . For low depth 

searches the q exponent was around 0.8, while 

for high depth searches it was at 0.7 or below. 

This values approach theoretical maximum 

speedups levels for the draughts game given 

the effective branching factor. 

The benchmark is obtained by performing 

successive searches on 30 valid game config-

urations. The test configurations were gener-

ated at random. Thereafter, we cumulated the 

overall search time for all of these searches, 

for different search depths. In order to get 

good estimators for the average search time in 

each case, we repeated the operation many 

times. 
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Fig. 6. Speedup for different search levels 

 

The curves in Figure 6 indicate the level of av-

erage search time for different levels of paral-

lelism. The principal observation is that the 

overall speedup is roughly a increasing func-

tion of the search time and search depth. This 

is a rather natural result as deeper search trees 

are characterized by increasing parallelism 

and thereby more speedup.  

 

 
Fig. 7. Impact of I/O latency on accessing the transposition table 

 

The measured speedups curves for different 

latency levels are depicted in Figure 7. The 

value of the speedup exponent ranged be-

tween 0.65 and 0.8. The curves in Figure 7 in-

dicate that the speedup is roughly a decreasing 

function of the latency time. We can also see 

that there are no high amplitude “humps” in 

the curves. The lack of “hump'' shapes in the 

low latency curve also suggests that within the  

game tree the parallelism hierarchy is well 

controlled, so we are not suboptimal in the 

task allocation. This is somehow an indication 

that more flexible node allocation schemes 

will not perform much better. 

 

 

6 Conclusions 

Many problems pertaining to the game theory 

realm appear not to possess exact polynomial-

time solutions and, therefore, are computa-

tionally intensive.  Furthermore, they may 

generate and analyze large quantities of data. 

Under these circumstances, applying parallel 

computing implementations, when seeking 

exact solutions, can be an interesting and ef-

fective computational alternative. 

We proposed in this paper an alpha beta strat-

egy enhanced with low latency access trans-

position tables in order to offer satisfactory 

speedups in high-performance parallel sys-

tems. We tested the strategy on a well-known 

combinatorial game: the International 
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Draughts. In order to further increase the 

speed of the computations we reduced the fre-

quency and the overall size of I/O operations 

on the transposition table. When the access to 

the transposition tables is done in low constant 

delay time, the achieved speedup performance 

vastly improves the sequential running time 

approaching the theoretical upper bounds of 

the code parallelism.  
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