
144 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.13

An Efficient Speedup Strategy for Constant Sum Game Computations

Alexandru-Ioan STAN

Business Information Systems Department

Babes-Bolyai University of Cluj-Napoca, Romania

alexandru.stan@econ.ubbcluj.ro

Large classes of game theoretic problems seem to defy attempts of finding polynomial-time

algorithms while analyzing large amounts of data. This premise leads naturally to the possi-

bility of using efficient parallel computing implementations when seeking exact solutions to

some of these problems. Although alpha beta algorithms for more than one-player game-tree

searches show moderate parallel performance, this paper sets forth an alpha beta strategy en-

hanced with transposition tables in order to offer satisfactory speedups on high performance

servers. When the access to the transposition tables is done in low constant delay time, the

achieved speedups should approach the theoretical upper bounds of the code parallelism. We

tested the strategy on a well-known combinatorial game.

Keywords: Constant Sum Games, Game Computation Parallelization Strategies

Introduction

High-performance parallel computing is

being increasingly used in computational sci-

ence to solve large-scale algorithmically in-

tensive problems. Recent technological ad-

vances in processor development gave rise to

a large range of unexpansive chips with tens

or even hundreds of cores. These multi-core

chips enhanced with simultaneous multi-

threading, dedicated fast access memory and

manifold specific cores, promise additional

performance and efficiency gains [1] [2], es-

pecially in processing computational science

applications.

Large classes of game theoretic problems

seem to defy attempts of finding polynomial-

time algorithms [3-7], requiring super-poly-

nomial time algorithmic schemes and,

thereby, being computationally intensive. Fur-

thermore, large quantities of data can poten-

tially be generated, analyzed and stored while

exploring exponentially growing game trees.

These premises lead naturally to the possibil-

ity of applying highly parallel computational

implementations when aiming to find exact

solutions for many game theory problems. We

propose a speedup strategy to allow constant

sum games computations to take full ad-

vantage of the parallelism and the efficient

scheduling strategies implemented on these

architectures [8] [9]. This way, we obtain fast

and accurate sub-game utility estimations by

scaling up the amount of required resources

and accelerating the dissemination of interme-

diate results.

This paper is organized as follows: section 2

is devoted to presenting the underlying game

theoretic concepts used in this research and re-

lated algorithmic complexity aspects. The

speedup strategy for constant sum games is

expounded in the third section. A case study

together with its experimental plan is detailed

in section 4. Results and conclusions are pre-

sented in sections 5 and 6.

2 Overview of relevant Game Theory Con-

cepts

The current section starts off by briefly restat-

ing the definitions of the main concepts used

throughout the paper, and proceeds by ex-

pounding the underlying considerations on the

algorithmic complexity of game equilibria

computations.

Brief Overview of underlying game theo-

retic Concepts

A finite perfect-information game in exten-

sive form is defined as a tuple 𝐺 =
(𝑁, 𝐴, 𝐻, 𝑍, 𝜒, 𝜌, 𝜎, 𝑢) where:

 𝑁 is the finite set of rational players;

 𝐴 is the set of possible actions of the play-

ers;

 𝐻 is the set of choice nodes;

 𝜒: 𝐻 → 2𝐴 is the choice function;

1

Informatica Economică vol. 18, no. 4/2014 145

DOI: 10.12948/issn14531305/18.4.2014.13

 𝜌: 𝐻 → 𝑁 is the player function which in-

dicates player to perform the move at

some given choice node;

 𝜎: 𝐻 × 𝐴 → 𝐻 ∪ 𝑍 is the successor func-

tion. This function maps pairs of choice

nodes and possible actions to other suc-

cessor terminal or choice nodes;

 𝑢 = (𝑢1, … , 𝑢|𝑁|), where𝑢𝑖: 𝑍 → 𝑅 is a

utility function for the player 𝑖 on the ter-

minal nodes 𝑍;

 𝑍 is the set of terminal nodes in the game

three. Each terminal node of the game

tree has an 𝑁-tuple of payoffs, one for

each player at the end of every possible

play.

Each player has a utility function defined for

every game outcome. The rational players

evaluate an outcome by its expected utility.

Finite perfect-information sequential games

are games in which the players take turns

changing in defined moves the game configu-

ration so as to achieve deterministically de-

fined winning conditions. In these games, one

player chooses his action before the others

choose theirs.

In constant sum games, the sum of players'

payoffs is the same for any outcome. Thus,

gains for a subset of players are always ob-

tained at the expense of the remaining partici-

pants. These games’ equilibria originate fre-

quently from mixed strategies associated with

starkly conflicting interests. By normalizing

each player’s payoff, constant sum games can

always be represented as zero sum games

where the total payoff is equal to zero.

Constant sum games are frequently solved us-

ing the minimax theorem closely related to

linear programming duality [10] and Nash

equilibria. Thus, constant sum games equilib-

ria are often find through minmax strategies

which aim for minimizing the possible loss for

a worst case (maximum loss) scenario. Gener-

ally, a maximin strategy is different from a

minimax one. Minimax is used in constant

sum games to minimize the opponent's maxi-

mum payoff. In constant sum games the two

strategies are interchangeable as minimizing

the individual maximum loss equates maxim-

izing the minimum gain.

In constant sum games of complete infor-

mation, minmax decision rules find subgame

perfect Nash equilibria, i.e. offer strategy pro-

files representing a Nash equilibrium for any

smaller game of the original game. Every fi-

nite game in extensive form has a subgame

perfect equilibrium [11].

In these cases minimax provides a recursive

method for finding subgame perfect equilibria

through backward induction by considering

the last actions of the game and calculating

backwards the actions the final player should

take in order to maximize her own utility. Sup-

posing that the last player does these actions,

the previous players at their turn try to max-

imize theirs utilities and the process continues

until the initial configuration of the game is

reached. The set of the remaining strategies

accounts for all subgame perfect equilibria for

finite-horizon extensive games of perfect in-

formation [11].

Complexity of Computing Nash Equilibria

Usually, computational problems pertain to

one of the two following complexity classes:

those which have a polynomial-time algo-

rithm – the complexity class P, and those

whose proofs are verifiable in polynomial

time by a deterministic Turing machine – the

NP complexity class. The class P is contained

in NP. NP contains many other important

complexity classes of problems. The hardest

problems to solve are regrouped in its NP-

complete subclass. Their solutions are capable

of dealing with any other NP problem in pol-

ynomial time. Papadimitriou [3] showed in

1994 that computing a mixed Nash equilib-

rium in a game pertains to the PPAD complex-

ity class (Polynomial Parity Arguments on Di-

rected graphs). As a matter of fact, computing

a Nash equilibrium is complete for the PPAD

class of problems, that is, it is the hardest

problem to solve in this complexity class.

PPAD class is a subclass of TFNP [12] com-

plexity class (Total Function Nondeterminis-

tic Polynomial) which, at its turn, is a subclass

of the complexity class FNP (the function

problem extension of the problem class NP).

NP is a class of decision problems, while FNP

is the analogous class of function problems.

146 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.13

Figure 1 depicts the position of the PPAD sub-

class within the complexity class NP.

Fig. 1. The nesting of the PPAD complexity

class under P ≠ NP hypotheses

Thus, computing Nash equilibria pertains,

with some notable exceptions, to the NP-inter-

mediate class and require, thereby, computa-

tionally intensive algorithmic schemes exe-

cuted in super-polynomial time.

Complexity of Minimax and Alpha Beta

pruning Algorithms

The minimax procedure is subject to combi-

natorial explosion, which makes it rather slow

and ineffective when applied to high dimen-

sion problems. Therefore, it does not compute

the real utility functions of the game players

but rather some estimators of these. As the

evaluation process is not performed in the

proximity of leaf nodes, an “accurate” proxy

of the utility function is used in order to decide

the “best” moves to play in accordance with

the confined perspective of the nearby hori-

zon. The utility function, in this context, as-

sesses the goodness of specific game configu-

rations for a given player. It can take into ac-

count a large number of factors and the rela-

tions existing amongst them.

Although the minimax enhancements can sig-

nificantly reduce the branching factor, the

number of overall utilities to be computed on

subsequent levels goes up exponentially as the

branching game tree keeps growing. Thus, the

minimum and maximum aggregate utilities

should be computed over tremendously large

sequences of game configurations.

For constant depth d searches in the game tree

and average branching factors of b the maxi-

mum number of nodes to be evaluated is of

order O(bd). Through alpha–beta pruning [13]

branches of the game tree can be eliminated in

the utility computational process. For optimal

or nearly optimal move orderings (the best

moves are regularly searched first), the num-

ber of leaf nodes to be evaluated is of order

O(bd/2).Therefore, in the reduced game tree

the search can go twice as deep as in the ordi-

nary minimax algorithm while using the same

amount of computational resources [13].

Whereas alpha-beta pruning is extremely effi-

cient in minimizing the search tree, there are

also many other techniques stemmed from ar-

tificial intelligence which can be applied to

further reduce the search space of the prob-

lem. Among those refinements we can cite al-

pha-beta enhancements, transposition tables,

null move pruning and late move reductions.

In some cases, they can further reduce the ef-

fective branch factor below the value of 3 and,

more rarely, even below 2.

3 The computational Strategy

The strategy we propose relies mainly upon

using the largely known minimax optimiza-

tion of alpha beta pruning, in conjunction with

low latency intermediate results repositories,

i.e. transposition tables [14][15], and a good

granularity in the splitting process of the com-

putational tasks.

The speedup strategy relies mainly upon low

latency transportation tables which accelerate

the searching process in the game tree. Trans-

position tables are very useful in performing

perfect information games computations

where all players fully apprehend the whole

state of the game, as they apply memorization

to the tree search by using dynamic program-

ming techniques. This way, we can keep track

of the millions of positions analyzed up to a

given point in time.

In a large number of games, it is possible to

attain specific game configurations in more

than one way. These different move se-

quences enabling players to reach one same

position, are called transpositions. After se-

quences of n consecutive moves, the combi-

natorial limit on the number of possible trans-

positions may usually reach an upper bound as

large as (n!)2. In spite of the fact that some of

these possible moves are obviously forbidden,

there remains a large amount of positions that

Informatica Economică vol. 18, no. 4/2014 147

DOI: 10.12948/issn14531305/18.4.2014.13

may be explored multiple times. We prevent this problem by using transposition tables.

Fig. 2. Taking advantage of the abundant computational resources of large multi-core servers

while exploring the game tree

Such tables are hash tables of game configu-

rations analyzed up to a certain depth. On en-

countering a new position, the program

checks the table to see whether the position

has already been analyzed; this can be done

quickly, in expected constant time. If the table

contains the value that was previously as-

signed to this position, then this value is used

directly. If not, the value is computed and the

new position is entered into the hash table.

The strategy encompasses the following five

aspects:

 The division of the utilities computations

of the game tree configurations into a rel-

atively high number of smaller tasks of

order O(branching factor*nb. of compu-

ting nodes) in order to take full advantage

of the parallelism and computational dis-

tribution;

 The implementation of the game tree as a

set of files gradually built up by parallel

processes performing time-costly inter-

mediate sub-games computations. A

shared file representation can tremen-

dously enhance parallel computation of

the tasks. In this case I/O operations (cre-

ate, delete, modify, read and write) must

be as fast as possible to assure the overall

application performance and surmount

tolerable processing latencies. We recom-

mend a low latency file set characterized

by high speed and accurate communica-

tion amongst computing workers;

 The usage of Alpha–beta pruning as opti-

mization of the minimax algorithm in or-

der to decrease the number of nodes to be

evaluated. In our strategy the transporta-

tion table is a stored in a set of files. Such

an implementation is helpful not only

when seeking equivalent game configura-

tions. In the alpha-beta implementation,

the search is optimal when the best suc-

cessor nodes are explored first. As the

best move is not known as long as leaf

leave levels are not reached, when using

iterative deepening the best move found

in the shallower search offers a good ap-

proximation of that and we store it in the

transposition table as the best child of the

node;

 Read/Write/Update operations of game

tree data files containing the intermediate

utility results by parallel processes per-

forming the computational tasks. When

intermediate results are computed/up-

dated, they should be stored right away in

the shared game tree. Here, synchroniza-

tion methods are required in order to en-

sure consistency amongst the different

physical supports. The data integrity is

here of paramount importance and we

148 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.13

must take advantage of effective replica-

tion and failure detection mechanisms.

Any breach of data integrity can lead to

incorrect computing and, therefore, prob-

lems must be quickly detected;

 A cache strategy of storing the data as the

search space grows exponentially and,

thereby, it may overpass the allocated

memory capabilities. Thus, it can arrive

that not all game positions can be stored.

When the shared file physical size ap-

proaches some given threshold, rarely

used positions are replaced with new ones

as in classical cache mechanisms. The

cache implementation might not be nec-

essary on some configurations offering

virtually unlimited storage amounts.

Fig. 3. Outlook of one tree node utility estimation

Using transposition tables may provoke erro-

neous results when past interactions in the

game tree are not carefully considered. Prob-

lems could arise in games where the history of

certain positions may reveal essential. For in-

stance, in some board games such as chess,

players may play two specific moves at a time

only if the pieces involved had not previously

moved in the game. Solutions to this type of

problems generally involve adding supple-

mental information as part of the hashing key.

Other examples are repetition draws when

some positions repeat themselves during the

course of the game leading to a draw outcome.

Repetition of past positions can be prevented

by storing history information in the nodes of

the transportation table although this could be

inefficient from a computational perspective.

4 Appling the computational Strategy to a

well-known combinatorial Game

In this section we start off by offering a very

succinct general description of the game on

which we tested the effectiveness of the

speedup computational strategy. Then, we

present the testing strategy and some coding

aspects.

General game Description

We considered testing the strategy on the In-

ternational Draughts combinatorial game. A

perfect information two-player game over a

game tree, as international draughts, can be

represented as an extensive form game over a

specific game tree with terminal nodes having

payoffs for win/draw/lose outcomes.

Fig. 4 Initial position

Informatica Economică vol. 18, no. 4/2014 149

DOI: 10.12948/issn14531305/18.4.2014.13

International draughts is one of the variants of

draughts, a two-player game played on a 10 by

10 board with alternating black and white

squares. In conventional diagrams the board is

displayed with the white pieces at the bottom

and black at the top as in Figure 4.

 The two players are at opposite sides,

with 20 pieces each, white for one player

and black for the other.

 The game is played on the black squares

of the board. Thus, there are 50 active

cases. The longest diagonal joining two

corners of the board and including 10

black squares, is referred to as the long

diagonal.

 Before starting a game, the 20 black and

20 white pieces are arranged on the first 4

rows of each player as can be seen in Fig-

ure 4.

Without entering into much detail, the moves

and captures abide by the following rules:

 There are two types of pieces: ordinary

pieces and crowned pieces (or kings);

 The first move is always played by the

white;

 Opponents make moves alternately;

 An ordinary piece must move forward,

diagonally one square on an empty square

in the next row;

 When it reaches the last row, the piece be-

comes a king. For this, the piece is

crowned by placing over a second piece

of the same color;

 A king must wait until the opponent has

played at least once before taking action.

A king moves backward or forward on

successive free squares on the diagonal it

occupies;

 Opposing pieces must be captured when-
ever a piece (crowned or not) jumps over
them;

 The opposite pieces must be captured

even though this would be disadvanta-

geous;

 The game is won whenever either player

has no pieces left;

 A game is a draw if the two opponents do

not have the possibility to win the game

or board configurations repeat them-

selves.

Fig. 5. Example of capturing of several black

pieces by a white king

A detailed list of the International Draughts

game’s rules can be found in [16].

The evaluation Functions

In the Draughts game case the utility function

estimator is generally computed as a weighted

average function. The different weighed vari-

ables are: the number of black and white

pieces, the number of black and white

crowned pieces and the disparity of pieces

(the number of black pieces minus the number

of white pieces, the number of black kings mi-

nus the number of white kings).

In the implementation of the game-playing al-

pha-beta pruning algorithm, we used three dif-

ferent evaluation functions to estimate the

utility (or the goodness) of specific board con-

figurations for each player. The evaluation

functions were typically designed so as to in-

crease the speed of exploring the subsequent

configurations tree. The functions were static

in the sense that they analyze only board con-

figurations from a static perspective and do

not explore possible subsequent moves.

Board Encoding

For a given configuration we represented each

Draughts board using 6 double precision 64

bit-boards. The first 2 double precision bit-

boards were used to indicate whether each cell

is or not empty. The third and the forth bit-

boards were used to indicate the type of the

piece (crowned or not crowned). The fifth and

the sixth bit-boards were used to give the color

150 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.13

of the existing pieces (black or white).

The testing Approach

Our testing method made use of two non-hu-

man computing players playing against each

other. One of the players employed a sequen-

tial algorithm while the other player had ac-

cess to parallel computational resources and

implemented a solution in conformity with the

recommended strategy.

Two performance case studies were em-

ployed:

 In the first case, both players had to find

a move in a given amount of time. Here,

we counted the number of tree nodes an-

alyzed by each player during the same

time period;

 In the second case, the players had to find

the best move by exploring the tree up to

some maximum depth. Here, we com-

pared the time amounts taken by the play-

ers to perform the equivalent complexity

computations.

In order to assess the importance of the I/O

delay time to access the transposition table,

we also artificially delayed each I/O operation

and evaluated the performance loss under

high, medium and slow latency conditions.

5 Some experimental Results

This section goes through several execution

aspects observed while running the combina-

torial game. Some aspects are specific to this

particular game, whereas others may apply to

any constant sum game implementation.

Observed average Branching Factor

In our setting, there were in average around 7

to 11 moves per position. Thus, adding an ad-

ditional level to the game tree roughly ex-

panded each leaf by the average branching

factor of the game tree. The alpha-beta prun-

ing optimization reduced branching by factors

ranging between 20 and 25 percent. This de-

creased the number of nodes to be evaluated

and improved the overall computational

speedup without any loss in result accuracy.

We first explored the best moves configura-

tions in order to ensure good effectiveness in

the pruning scheme.

Speedup Measurements

In this context, the speedup metric is the im-

provement factor as mode computational con-

tribute to decrease the running time. We meas-

ured the speedup factor of the algorithmic

strategy by timing the execution for different

parallelism levels (i.e. number of computing

nodes, processes or threads).

The speedup has the following power function

form with a sub-unitary positive exponent:
qppspeedup)(. Here p stands for the paral-

lelism level and q for the discounting expo-

nent. The exponent can be estimated by a log-

log regression on the speedup data series, i.e.

)log()log(pqspeedup . For low depth

searches the q exponent was around 0.8, while

for high depth searches it was at 0.7 or below.

This values approach theoretical maximum

speedups levels for the draughts game given

the effective branching factor.

The benchmark is obtained by performing

successive searches on 30 valid game config-

urations. The test configurations were gener-

ated at random. Thereafter, we cumulated the

overall search time for all of these searches,

for different search depths. In order to get

good estimators for the average search time in

each case, we repeated the operation many

times.

Informatica Economică vol. 18, no. 4/2014 151

DOI: 10.12948/issn14531305/18.4.2014.13

Fig. 6. Speedup for different search levels

The curves in Figure 6 indicate the level of av-

erage search time for different levels of paral-

lelism. The principal observation is that the

overall speedup is roughly a increasing func-

tion of the search time and search depth. This

is a rather natural result as deeper search trees

are characterized by increasing parallelism

and thereby more speedup.

Fig. 7. Impact of I/O latency on accessing the transposition table

The measured speedups curves for different

latency levels are depicted in Figure 7. The

value of the speedup exponent ranged be-

tween 0.65 and 0.8. The curves in Figure 7 in-

dicate that the speedup is roughly a decreasing

function of the latency time. We can also see

that there are no high amplitude “humps” in

the curves. The lack of “hump'' shapes in the

low latency curve also suggests that within the

game tree the parallelism hierarchy is well

controlled, so we are not suboptimal in the

task allocation. This is somehow an indication

that more flexible node allocation schemes

will not perform much better.

6 Conclusions

Many problems pertaining to the game theory

realm appear not to possess exact polynomial-

time solutions and, therefore, are computa-

tionally intensive. Furthermore, they may

generate and analyze large quantities of data.

Under these circumstances, applying parallel

computing implementations, when seeking

exact solutions, can be an interesting and ef-

fective computational alternative.

We proposed in this paper an alpha beta strat-

egy enhanced with low latency access trans-

position tables in order to offer satisfactory

speedups in high-performance parallel sys-

tems. We tested the strategy on a well-known

combinatorial game: the International

152 Informatica Economică vol. 18, no. 4/2014

DOI: 10.12948/issn14531305/18.4.2014.13

Draughts. In order to further increase the

speed of the computations we reduced the fre-

quency and the overall size of I/O operations

on the transposition table. When the access to

the transposition tables is done in low constant

delay time, the achieved speedup performance

vastly improves the sequential running time

approaching the theoretical upper bounds of

the code parallelism.

Acknowledgement This work was co-

financed from the ESF through Sectoral Oper-

ational Programme Human Resources Devel-

opment 2007-2013, project

POSDRU/159/1.5/S/134197 „Performance

and excellence in doctoral and postdoctoral

research in Romanian economics science do-

main” and UEFISCI, under project PN-II-PT-

PCCA-2013-4-1644.

References

 [1] J. E. Savage and M. Zubair, “A unified

model for multicore architectures”, in Pro-

ceedings of the 1st international forum on

Next-generation multicore/manycore

technologies (IFMT '08), ACM, New

York, NY, USA, Article 9 , 12 pages,

2008.

[2] V. Pankratius, C. Schaefer, A. Jannesari,

and W. F. Tichy, “Software engineering

for multicore systems: an experience re-

port”, in Proceedings of the 1st interna-

tional workshop on Multicore software en-

gineering (IWMSE '08), ACM, New York,

NY, USA, pp.53-60, 2008.

[3] C. Papadimitriou, "On the complexity of

the parity argument and other inefficient

proofs of existence", Journal of Computer

and System Sciences, Vol. 48, no. 3,

pp.498–532, 1994.

[4] C. Daskalakis, P. Goldberg and C. Papadi-

mitriou “The complexity of computing a

Nash equilibrium”, in Proc. of the 38th

Annual ACM Symposium on the Theory of

Computing (STOC), ACM Press, 2006, pp.

71–78.

[5] A. Fabrikant, C.H. Papadimitriou and K.

Talwar, “The complexity of pure Nash

equilibria”, in Proc. of the 36th Annual

ACM Symposium on the Theory of Compu-

ting (STOC), ACM Press, 2004, pp. 604–

612.

[6] G. Gottlob, G. Greco and F. Scarcello,

“Pure Nash equilibria: Hard and easy

games”, Journal of Artificial Intelligence

Research, Vol. 24, pp. 195–220, 2005.

[7] G. Schoenebeck and S. Vadhan, “The

computational complexity of Nash equi-

libria in concisely represented games”, in

Proceedings of the 7th ACM Conference

on Electronic Commerce (ACM–EC),

ACM Press, pp. 270–279, 2006.

[8] R. Nobre, P. Pinto, T. Carvalho, J. M. P.

Cardoso, and P. C. Diniz, “On Expressing

Strategies for Directive-Driven Multicore

Programing Models”, in Proceedings of

Workshop on Parallel Programming and

Run-Time Management Techniques for

Many-core Architectures and Design

Tools and Architectures for Multicore Em-

bedded Computing Platforms (PARMA-

DITAM '14), ACM, New York, NY, USA,

pp.7-14, 2014.

[9] G. Imre and G. Mezei, “Parallel graph

transformations on multicore systems”, in

Proceedings of the 2012 international

conference on Multicore Software Engi-

neering, Performance, and Tools

(MSEPT'12), Victor Pankratius and Mi-

chael Philippsen (Eds.), Springer-Verlag,

Berlin, Heidelberg, pp.86-89, 2012.

[10] K. Binmore, Playing for real: a text on

game theory. Oxford University Press US,

2007, chapters 1 & 7.

[11] M.J. Osborne, An Introduction to Game

Theory. Oxford University Press, USA,

2004.

[12] K. Daskalakis, The complexity of Nash

equilibria. ProQuest, UMI Dissertation

Publishing, September, 2011.

[13] S. J., Russell and P. Norvig, Artificial In-

telligence: A Modern Approach (3rd ed.).

Upper Saddle River, New Jersey: Pearson

Education, Inc., 2010, pp. 167 ISBN 0-13-

604259-7.

[14] A. Kishimoto and J. Schaeffer, “Distrib-

uted game-tree search using transposition

table driven work scheduling”, in IEEE

Informatica Economică vol. 18, no. 4/2014 153

DOI: 10.12948/issn14531305/18.4.2014.13

Proceedings of the 9th International Con-

ference on Parallel Processing(ICPADS),

pp. 323-330, 2002.

[15]] A. Kishimoto and J. Schaeffer, “Trans-

position Table Driven Work Scheduling in

Distributed Game-Tree Search”, in Proc.

of Fifteenth Canadian Conference on Ar-

tificial Intelligence (AI'2002), vol. 2338 of

Lecture Notes in Artificial Intelligence

(LNAI), pp. 56-68, Springer, 2002.

[16] Official FMJD rules for competitions.

Available: http://www.fmjd.org.

Alexandru-Ioan STAN is a teaching assistant at the Faculty of Economics and

Business Administration, within the Business Information Systems department

at Babes-Bolyai University of Cluj-Napoca. He holds a Ph.D. from the same

university. His research is oriented towards the applications of computational

finance. He is also interested in parallel and distributed computing.

