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Introduction  
Assume that the aim is to discriminate 

among the instantiations of m concepts or 

classes, conventionally represented by the 

labels        . Each instantiation comes 

from one and only one concept, refered as the 

true provenance class. The usual 

representation of instantiations is in terms of 

the values of a pre-selected finite set of n 

descriptors or attributes.  

The aim is to find out a set of boundaries 

separating each pair of classes based on the 

information supplied by a finite set of 

examples coming from these classes, 

conventionally referred as a training set. The 

framework and the corresponding 

methodology strongly depend on the 

additional information concerning the set of 

examples. In a supervised framework for 

each example the label corresponding to the 

provenance class is supplied. Therefore, in 

this case, the basis for deriving a set of 

separating boundaries is represented by a 

finite set of labeled examples      , where x 

is the representation of the particular 

example and y is a code representing the 

label of the provenance class of x.  

Let us assume that we found somehow a 

suitable set of boundaries that correctly 

separate the available set of boundaries. 

Since the information concerning the classes 

is exclusively contained by the finite training 

set, there are no guarantees that the set of 

boundaries are “good enough” in the sense 

that using them, the provenance class of a 

new, unseen yet example can be inferred. In 

other words, the problem of generalization 

capacities arises in a very natural way. 

Usually, there is no hint concerning the 

functional expression one should consider for 

the separating boundaries. Consequently, we 

could try to propose some parameterized 

expressions and fit the parameters against the 

particular training set. Obviously, the 

simplest expression of the boundaries is of 

linear type, but unfortunately, very seldom it 

happens that the provenance classes can be 

separated by linear type boundaries and 

moreover, even the available training set 

cannot be correctly separated this way.    

In the following we consider the binary case 

that is the task is to find out a suitable 

separating boundary for two classes. 

Moreover, the aim is to find out a separating 
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boundary of linear type that is a hyperplane 

in the space of examples that correctly 

separates the positive examples of the 

negative ones when this is possible and 

minimizes the number of misclassifications 

otherwise. Besides, in order to assure good 

generalization capacities we would like to 

find out a separating hyperplane placed at 

almost equal distance to the positive and 

negative examples respectively. In order to 

assure this property, a modern and powerful 

methodology has been lately developed 

yielding to the theory of Support Vector 

Machines (SVM). The fundamentals of this 

theory were established by Vapnik ([1], [2]). 

Several refinements have been proposed by 

many authors as for instance the use of 

kernels as a tool to maximize the quantity of 

information extracted from the training data 

([3], [4], [5], [6], [7]).  

The aims of the paper are multifold, to 

propose a new method to determine a 

suitable value of the bias corresponding to 

the soft margin SVM classifier and to 

experimentally evaluate the quality of the 

found value against one of the standard 

expression of the bias computed in terms of 

the support vectors. Also, it is proposed a 

variant of the Platt’s SMO algorithm to 

compute an approximation of the optimal 

solution of the SVM QP-problem. The new 

method for computing a more suitable value 

of the bias is based on genetic search. In 

order to evaluate the quality of the proposed 

method from the point of view of recognition 

and generalization rates, several tests were 

performed, some of the results being reported 

in the final section of the paper. 

 

2 Soft Margin SVM 

Let                              
     the training dataset. We say that   is 

linearly separable if there exists a hyperplane 

in the space of inputs separating the positive 

to the negative examples. There are few 

known methods that allow to establish 

whether   is linearly separable or not, one of 

them being the celebrated Ho-Kashyap 

procedure [8], the computational complexity 

involved by these methods being 

substantially high. Consequently, the 

methods for estimating the parameters of the 

separating hyperplane facing the possibility 

that   is not linearly separable are looked for.  

The use of kernels is one of such methods, a 

kernel “hiding” a not explicitly given non-

linear transform projecting the input data 

onto a higher dimensional new space in the 

hope that this way on one hand more 

information can be extracted from data, and 

on the other hand the subsets of positive and 

negative examples, and possibly the 

representations of the classes become linearly 

separable.   

 

2.1 The Kernel-Based Learning Theory 

One of the fundamental mathematical results 

underlying the kernel-based learning theory 

is the celebrated Mercer’s theorem.  

Definition. Let A  be a compact subset of 

R
n
, for some n N

*
, and n  the Lebesque 

measure on  nB,n
R , where nB stands for 

the  -algebra of n-dimensional Borelian 

sets. The symmetric function  AAK : R 

is said to be a positive defined kernel on A if 

the following conditions hold, 

 C1. for any finite number N and for any 

finite set of points   ANixi  ,...,1, and for 

any real numbers  Niai ,...,1,  ,  

  0,
1,




N

ji

jiji xxKaa          

C2.        A A nn ydxdyxK ,2
     

If K is a positive defined kernel on A, 

then it induces the integral operator 

   nn
RR

22: LLLK   given by, for any 

 n
R

2Lf  , 

        
n

R

tdtftxKxfL nK ,  

The integral operator KL is called the 

Hilbert-Schmidt operator induced by the 

kernel K. It can be proved (Mercer, 1908) 

that KL is a self-adjoint, positive, compact 

operator having a countable system of non-

negative eigenvalues  
 ,1kk satisfying 
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


1

2

k
k

 and the corresponding  AL2 -

normalized eigenfunctions  
 ,1kk form an 

orthonormal basis of  AL2 . 

Theorem Mercer. Let A be a closed subset 

of R
n
 and K be continuous symmetric 

function such that C1 and C2 hold. Then, for 

any yx,  R
n
 ,  

     






1

,

k
kkk yxyxK  ,           

where the series converges absolutely for 

each pair   AAyx , and uniformly on 

each compact subset of A.  

Let Ag : F,     ,...2,1,  kxxg kk , 

where F is called the feature space. Each 

eigenfunction k is conventionally referred 

as a selected feature, the corresponding 

eigenvalue k being taken as the value of the 

feature k for the example x. The function g

is called a feature extractor and for each x  

R
n
,  xg is the representation of the example 

x in the feature space. 

By construction, the dimensionality of F is 

determined by the number finite, or 

denumerable infinite, of positive eigenvalues 

of the kernel K.  

In the particular case when the number of 

positive eigenvalues of the kernel K is finite, 

say m, then the dimensionality of F equals m 

and conventionally  xg is represented as a 

m-dimensional column vector and for any 

  AAyx , , we get  

         yxKyxygxg
m

k
kkk

T ,

1

 


 . 

For simplicity sake, in the more general cases 

when the dimensionality of F is infinite, we 

extend the notation to represent the inner 

product defined on F by the series  

         yxKyxygxg
k

kkk

T
,

1






 . 

If g is a particular selected feature extractor 

Ag : F, then the function 

     ygxgyxK T,  is a semi-positive 

defined kernel. The kernel “trick” consists in 

assuming a particular expression for a 

positive defined kernel K, as for instance a 

polynomial or exponential expression. 

According to the Mercer theorem, there 

exists a feature extractor g such that 

     ygxgyxK T,  holds, where neither the 

explicit functional expression of g nor the 

dimensionality of F are known. However, 

this information is not really needed, because 

the computations involving the kernel K are 

carried out in the initial n-dimensional space.  

Note that the values of  ', xxK  increases as x 

and x’ become “closer”, that is the kernels 

given in Table 1 correspond to some 

similarity measures on R
n
.  

 

 

Table 1. The comparative analysis of the recognition rates 

Method Recognition rate 

Linear discriminant function 83% 

Quadratic discriminant function 84.50% 

Mahalanobis-type discriminant function 79% 

Soft margin SVM - SMO algorithm using the Gauss 

kernel and the bias given by (10) 

87.25% 

Soft margin SVM - SMO algorithm using the Gauss 

kernel and the bias computed by the genetic algorithm 

87.75% 

Soft margin SVM - SMO algorithm using the 

exponential kernel and the bias given by (10) 

84.25% 

Soft margin SVM - SMO algorithm using the 

exponential kernel and the bias computed by the 

genetic algorithm 

87.50% 
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2.2. The non-linear soft margin SVM  

The non-linear transform is a vector valued 

function       , the image of   in the 

space   being given by                

       ,    1,1      . The transform g is 

a feature extractor, and   is the feature 

space. When the dimension of   is finite, say 

m, a pair           , defines the 

classifier           
             

             
 , 

for any input data x.   

The feature extractor g is designed as 

follows. Let K be a function that “hides” the 

explicit functional expression of g. Then, the 

evaluation of the expression            
is performed exclusively in terms of K and 

the resulted feature space cannot be explicitly 

known. The core result in approaches of this 

type is the celebrated theorem due to Mercer 

[9]. The most frequently used kernel 

functions are the polynomial kernel, the 

Gauss Radial Basis Function (RBF) and the 

exponential RBF, their expressions being 

    1,1,  dyxyxK
dT

 

    0,exp,
2

  yxyxK  

    0,exp,   yxyxK  respectively. 

Let us assume that for a selected kernel K,    

is non-linearly separable. Let us denote by g 

the feature extractor such that         
           and      a linear classifier in the 

feature space of parameter      , that is, for 

the input x,             if and only if 

          . The model of soft-margin 

SVM assumes a set of slack variables 

          , where    expresses the 

magnitude of the error committed by       for 

the observation        , that is    
            

          .  
For any misclassified example        , the 

value of    expresses the magnitude of the 

error committed by the classifier       with 

respect to        . The overall importance of 

the cumulated errors usually can be 

expressed as  

     
 

 

   

                                          

where F is a convex and monotone increasing 

function and     is a weight parameter.  

We obtain a QP problem [10] 

 
 
 

 
           

 

 
           

 

 

   

     

    
                      

                                                

      

 

where C is a conventionally selected constant 

used to weight the effect of the cumulated 

errors.   

Being given its complexity, the problem (2) 

cannot be solved in this general form, but 

only for particular functional expressions of 

F and the weight parameter t. The simplest 

model uses        and    , in this case 

the problem (2) becomes the constrained QP-

problem 

 
 
 

 
           

 

 
         

 

   

            

    
                       

                                                 

      

whose dual QP-problem is  

 
 
 

 
 

                                        

     

 

   

                                               

                        

  

where  

     

    

 

   

 
 

 
                  

 

   

 

   

 

To conclude, in order to design a soft-margin 

SVM, a particular expression of the kernel 

function K and the magnitude of the constant 

C have to be selected in advance, then the 

optimization QP-problem (4) has to be 

solved. 

If       
    

      
    is a solution of (4), 

then the parameter    is  

      
        

 

   

                                

Since the solutions of (4) do not involve the 

parameter b, its value should be determined 

such that                        
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                     holds, therefore 

more options concerning    are allowed ([3], 

[4]). One of the most used expressions of    
is  

   

  
 

 
    
       

   
           

 

   

    
      

   
           

 

   

                           

 

3.  Adaptive Algorithms to Approximate 

the Parameters of a Soft Margin SVM 

Classifier 

According to the arguments supplied in the 

Section 2, the core problem of the 

computation of the soft margin SVM 

separating hyperplane is represented by the 

QP-problem (4). So far there have been 

proposed several methods for approximating 

a solution of (4).   

 

3.1. A Variant of Platt’s SMO Algorithm 

Sequential minimal optimization (SMO) 

algorithm was introduced by Platt [11] and 

further extended by several authors ([12], 

[13])  is a simple algorithm that allows to 

solve the SVM-QP problem without extra-

matrix storage by decomposing the overall 

QP-problem into simple QP sub-problems 

similar to Osuna’s method [14]. The idea of 

the SMO algorithm [11] is to solve the 

smallest optimization problem at each step, 

in case of the QP-problem corresponding to 

the soft margin SVM, the smallest 

optimization sub-problem involving only two 

Lagrange multipliers. In this section we 

present a variant of the Platt’s SMO 

algorithm to approximate a solution of (4). 

Let   be a kernel satisfying the conditions of 

the Mercer’s theorem and   its 

corresponding feature extractor, that is 

                           . Let us 

denote by               , where 

            
 
    is the parameter of a 

separating hyperplane. Then 

                              

 

 

       

The idea of the SMO algorithm is to use a 

predefined constant    , and a tolerance 

parameter    , expressing a sort of tradeoff 

between accuracy and efficiency. At each 

step two examples        ,         are 

looked for such that the following condition 

holds, 

                         

             

              

              

         

                                                       

Let us assume that, at the current step, there 

exists at least a pair        ,         for 

which (8) holds. The entries    and    of 

the current parameter   are modified such 

that to increase       and to 

decrease      .  
Since the updated parameter has to fulfill the 

constraint      
 
     , the updating rules 

are, 

          

          

where  

  
                      

                           
    

If the conditions            and 

           do not hold, the value of 

the tolerance parameter   should be decrease 

accordingly. In case, at a certain step, there 

are no examples        ,         such that 

(8) holds, the search process is stopped.  

Our variant of the Platt’s SMO algorithm 

uses the following updating rules. Let 

       ,         be a pair of examples such 

that (8) holds, and     the current parameter. 

Then,  

     
        

     
        

where   is given by (9). The value of the 

parameter   should be adjusted to assure that 
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the updated values    and    still belong to 

     . Our option is for the following 

adjusting strategy. Assume that at least one 

of the entries       does not belong to 

     .  
1. In case        , then   is set to 

      
        

    . Indeed, since 

   ,      and     , therefore 

at least one of the inequalities     , 

     holds.  If   
      

     , then 

we set     
   , otherwise we set 

      
   and we get   

    

     
       

      
         

   .  

2. In case           , the setting 

of the parameter    is   

      
      

    . In order to prove 

that for this setting both parameters 

   and    belong to      , we have 

to take into account only the case 

when at least one of the entries 

      does not belong to      , that 

is      and/or     . If   
    

  
    , then the setting is       

   , 

otherwise       
    and obviously 

both updated entries belong to      .  
3. In case            then   is set 

to       
      

    . In this case at 

least one of the inequalities    

       holds. If   
      

    , then 

we set     
   . Similarly, if 

  
      

    then     
   , therefore 

       
      

      and     . 

4.  If         , then   is set to 

      
        

    . In this case at 

least one of the inequalities     , 

     holds. If     
      

   , then 

      
   , otherwise     

   , 

therefore     , and        
    

  
     .  

The implementation of this variant of the 

Platt’s SMO algorithm uses the stopping 

condition   defined in terms of the tolerance 

parameter     and        when there is 

no pair of examples        ,         such 

that (8) holds. 

 

3.2. Tuning the Bias Parameter b on the 

Basis of a Genetic Approach 

The class of genetic algorithms (GA) is a 

relatively new kind of computation, referred 

as natural computation, providing an 

alternative in solving hard optimization 

problems where the high dimensionality 

determines that the computations involved by 

the classical optimization methods become 

intractable ([15], [16]).  

The general scheme of genetic algorithms 

can be briefly described as follows. Let us 

denote by  

      a function whose 

maximization on   is aimed.  For each 

   ,      represents the quality of x from 

a certain point of view, therefore the function 

f is usually referred as a fitness function. The 

search for a maxima point of the function f  is 

an iterative team-like process, where, at each 

step, the team consists of the best 

approximations of a maxima point found so 

far. At each step, the current team is referred 

as the current population and consists of a 

certain finite number of elements not 

necessarily distinct, belonging to  , the sizes 

of populations being either fixed or 

dynamically computed during the search 

process. The initial population    used when 

the algorithm starts consists of a finite 

number of randomly selected individuals 

belonging to  . The genetic algorithm uses a 

finite number of so-called recombination 

operators which represents a certain 

mechanism to generate elements from  . Let 

us denote by    the current population at the 

i-th iteration. The new population is usually 

computed by retaining a certain number of 

the best individuals of   , a certain number 

of so-called “parents”        and by 

including the offsprings of    , the 

individuals resulted by applying the 

recombination operators to the elements 

selected in    . The searching process is 

over when a stopping condition   holds, 

usually expressed in terms of a threshold 

imposed on the number of iterations.   
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Accordingly, the general scheme of a genetic 

algorithm is. 

        

Step 1. Initialization:    resulted by 

randomly selet a given number of individuals 

of    

Step2. Evaluation: for each      
compute       

Step3. Repeat 

3.1. Select the mating pool     
3.2. Apply the recombination 

operators  

3.3. Evaluate the resulted candidates 

3.4. Deterimine the next population 

    ;  

3.5.           

until    

 

We use a genetic algorithm to find out from 

data a suitable value of the bias parameter b 

aiming to maximize the mean recognition 

rate in discriminating between two classes.  

In order to set the parameters of the genetic 

algorithm we use the fitting function      
representing the mean recognition rate of the 

linear classifier       , where    is an 

approximate of the optimal solution of (7) 

computed by the SMO algorithm.  

The search space is established according to 

the following simple argument. First of all, it 

is quite natural to assume that for a given 

setting        the corresponding linear 

classifier correctly classifies in the feature 

space at least one sample coming from each 

class. Then, assume that    is correctly 

classified by the classifier       . If     , 

then             , therefore    

                   
       . If 

     , then             , that is  

                      
       . 

We arrive at the conclusion that the values of 

the bias parameter b lye in the interval 

  

          
                  

        

.  

The settings of the fixed-size population of 

the genetic algorithm are: 

 the population sizes depend on the length 

of the interval  , lying between 10 and 

20; larger population size is set in case of 

longer intervals. In our tests we used 

relatively small size populations, because 

a long series of tests proved that, in case 

of larger size populations, in spite of lack 

of significant improvements the 

computational complexity is significantly 

increased; 

 the individuals of the initial population are 

randomly selected from the interval  ; 
 the parent selection mechanism is 

performed according to the roulette 

strategy based on the fitness 

proportionally selection probability 

distribution;   

 we use only one recombination operator, 

the crossover, implemented as a convex 

combination of two chromosomes; 

 the survival generation is obtained in 

elitist way; we consider two strategies, 

namely, 

a) the new generation is composed 

by taking the offsprings, except 

the case when the best parent is 

more fitted than the best 

offspring, in this case the less 

fitted offspring is replaced by the 

best fitted parent;  

b) composing the new generation by 

selecting the best individuals from 

the current population and the 

generated offsprings;   

 the stopping condition is formulated by 

imposing a threshold on the number of 

generations; in our tests the upper limit 

on the number of generations is 7. The 

value of the upper limit was set to 7 

because many tests pointed out a quick 

stabilization around the maximum value 

of the fitness function.   

We implemented the previously described 

genetic algorithm for computing an 

approximate of the bias value that guarantees 

the highest mean recognition rate. In our tests 

we used two datasets, training and test 

respectively. The parameter vector    is 

determined on the basis of the training set 

using the SMO algorithm and the genetic 

algorithm is applied on the overall data set 

resulted as the union of training and test 
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datasets. 

 

4 Comparative Analysis  

The developments in this section analyze the 

effects of different choices of the bias 

parameter    on the generalization capacities 

evaluated in terms of the mean recognition 

rate corresponding to the resulted classifier. 

It is well known that the value of the bias 

parameter    cannot be computed by solving 

the QP-problem (4) and there have been 

proposed several computation rules 

expressed in terms of the support vectors, as 

for instance (6). In our developments we 

used the expression (10) proposed in [17], 

where          
           

 
      

     , and SV is the set of support vectors, 

in order to refine the bias by taking into 

account the relative importance of the 

support vectors.  

   
 

    
   

   
     

                            

Our tests were performed on artificially 

generated data from Gaussian repartitions. 

Also, we used two types of kernels, the 

Gauss Radial Basis Function (GRBF), 

                           and 

the Exponential Radial Basis Function 

(ERBF),                         
 , where the value of the parameter   was 

determined such that the recognition rate is 

optimized.  

For instance, the results of the comparative 

analysis in case the data were generated from 

      
 
   

         
        

   and 

     
 
   

        
         

   are presented in 

Figure 1, Figure 2 and Figure 3 and they are 

summarized in Table2. The training data 

consisted of 150 examples coming from each 

class and the test data contained 400 

examples coming from each class. The 

training and test data are represented in 

Figure 1 and Figure 2 respectively. The 

computed support vectors are depicted in 

Figure 3.    The best recognition rate 87.75% 

was obtained in case of the variant of SMO 

algorithm described in Section 3, with GRBF 

kernel,        and the bias computed by 

the genetic algorithm. 

  

 
Fig. 1. The training data 
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Fig. 2. The test data 

 

 
Fig. 3. The support vectors computed by the variant of SMO algorithm 

 

The tests pointed out that the variation of the 

recognition rates depends on the inner 

structure of the classes from which the 

learning data come as well as on their 

separability degree. Consequently, the results 

are encouraging and entail future work 

toward extending these refinements to multi-

class classification problems and approaches 

in a fuzzy-based framework. 
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