
Informatica Economică vol. 17, no. 4/2013 77

DOI: 10.12948/issn14531305/17.4.2013.07

Developing an M-Learning Application for iOS

Paul POCATILU
Department of Economic Informatics and Cybernetics
Bucharest University of Economic Studies, Romania

ppaul@ase.ro

The mobile market development has a high impact on all domains including education. Smart
mobile devices started to be affordable and the massive use on educational processes does not
seem to be too far. Mobile learning applications are be targeted for all major mobile
operating systems as native applications or Web-based. The objective of this paper is to
present the implementation of the evaluation module for an m-learning application developed
for iOS devices. The m-learning application is targeted to a higher education institution. The
application uses Web services in order to obtain the content and to authenticate the users.
Keywords: Mobile Learning, Mobile Application Development, iOS, Model View Controller,
Web Service, Assessment

Introduction
Mobile learning represents a research

topic for many academics and practitioners.
Around the world there are several projects
ongoing or finalized that aim the
development of mobile learning applications
for different mobile platforms or Web based
applications optimized for mobile devices,
like [1], [2], [3] and [4]
Mobile learning applications could include
modules for:
 Content presentation (lessons); content

include text, video, audio, graphics; it
could as simple as displaying only text or
loading PDF or other files or very
complex, using multimedia components
[5];

 Short assessments (quizzes); these are
available to students in order to test their
knowledge; the user can take these tests
whenever they want and they are not
time-restricted;

 Final assessments (tests); these tests are
given at a specific date and time and they
have a limited duration;

 Trainer-student communication; this
involves the use of well known
components (e-mail or social networks)
or by using a dedicated component based
on a specific protocol.

 Content sharing (e-mail, social networks,
cloud etc.); this will allow users to share
the content or results with other

registered users or anyone (if the
application allows it);

 Homework and assignments; the students
could load a file or fill some data fields
according to requirements.

Each developer chooses to include one or
more modules in their applications. The
applications could be developed as
standalone applications (all content is stored
on the device), distributed applications (a
native client and the server that provides
learning contents) and Web-based
applications (the client is a simple mobile
Web browser [6]). It is important to design
the application taking into account several
quality characteristics based on the users
requirements and behavior [8].
For connected mobile learning applications
the client communicates with the server
using standardized protocols (like HTTP) or
dedicated protocols. Also, the connected
applications can synchronize the mobile
device with the server.
In this field, were developed several
prototypes of mobile learning applications in
a framework of a research project. In this
respect, it was developed a SOAP-based Web
service that provides methods for students'
assessment. The most recent work includes
the implementation of a mobile learning
application for Android devices. The results
were presented in [4].
As for the previous project, the main purpose

1

78 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.07

is to keep the user interface as simple as
possible and to focus on the basic
functionalities. Further versions need more
focus on the graphical interface and the user
interaction (like using gestures etc.).
The use of Web services has the advantage
that:
 client applications could be of any type

(mobile, desktop);
 the client application could be developed

using almost any existing language or
technology;

 the client application can be targeted on
almost any existing platform or operating
system;

The Web service includes methods for
students’ assessment. Each student could
login and select a test for one topic. The topic
is related mobile applications development.
Figure 1 depicts the interaction between the
mobile device and the Web service,
highlighting some of the Web service’s
methods.

Fig. 1. Assessment module interaction using Web services

The Web service could be easily extended to
support other functionalities by
implementing new methods.
The paper presents the main results obtained
during the implementation of a mobile
learning application for iOS devices, using
the same Web service. The application
implements a multiple-choice test.
The paper is organized as follows:
The section entitled iOS Applications
Development presents the main
characteristics of the iOS operating system
and the particularities of the iOS applications
development.
Web Services Access deals with the main
frameworks used to consume Web services
from iOS applications.
The Mobile Learning Application section
presents the mobile learning application
developed for iOS.
The paper ends with conclusions and future
work.

2 iOS Applications Development
iOS is the operating system developed by
Apple for their mobile devices in 2007. The
core operating system is similar to OS X that

is based on Unix. The operating system
supports processors with ARM architecture.
Currently iOS is the second most popular
platform after Android, counting over 12
percent in the third quarter of 2013 [8].
Figure 2 depicts the main layers of the iOS
platform: Core OS, Core Services, Media and
Cocoa Touch.
The Core OS include the kernel (based on
UNIX Mach kernel), drivers, libraries and
system utilities.
Core Services layer provides support for file
management, threading, networking, memory
management and other basic services.

Fig. 2. iOS platform layers

Cocoa	Touch

Media

Core	Services

Core	OS

Web
Service

GetNumarTeste

GetNumarIntrebariTest

GetIntrebare

Informatica Economică vol. 17, no. 4/2013 79

DOI: 10.12948/issn14531305/17.4.2013.07

Media layer includes support for printing and
graphics (OpenGL, QuickTime etc.).
Cocoa Touch is a subset of Cocoa API for
Mac OS X. It handles the user interaction and
GUI. Cocoa Touch includes the UIKit
framework, Foundation framework and other
frameworks that provide access to system
resources like contacts, GPS, camera etc. [9].
On top are user and system/preinstalled
applications.
iOS native applications development
involves the use of Xcode IDE and Objective
C as the main programming language.
Objective C is an extension of the C
programming language that allows the use of
classes and objects.
Objective C classes are declared within an
@interface block. Messages (methods)
implementation is inside @implementation
section. For class forward declaration @class
keyword is used.
As a practice, class declarations are stored in
header files (.h) and class implementation in
source files (.m).
Instance variables are declared in @interface
section, between the curly braces.
Methods (also called messages) names
include the parameters’ labels separated by
colons. Method calls are different from
C/C++ or Java method calls. For example,
the class Test declares the method:

setRaspunsuriPentruIntrebare:cuVarianta

in this way:

@interface Test : NSObject
//...
-(void) setRaspunsPentruIntrebare:
(int)idIntrebare cuVarianta :
(int)varianta;

@end

The minus sign (-) in front of a method
shows that is an instance methods. The plus
sign (+) in front of a methods is used for
class methods (static methods).
The method is called using square brackets
like in this example:

[self.testCurent
setRaspunsPentruIntrebare: idIntrebare

cuVarianta: idVarianta];

Methods cannot be overloaded and parameter
labels differentiate them.
All class-type objects have to be allocated
dynamically. Object creation involves the use
of two methods: alloc (for memory allocation
and default instance member initialization)
and init (for specific member initialization,
even for superclass members).
In order to access data members, property
could be added to classes. Properties are
declared with @property keyword and, in
order to internally generate setters and
getters, @synthesize keyword is used in
implementation block with the association
between the property and the corresponding
data member.
Cocoa classes are derived from NSObject
class.
iOS applications are based on Model-View-
Controller design pattern [10], [11], Figure 3.

Fig. 3. Model-View-Controller design pattern

The model refers to data and data
management. Here is the business logic of
the applications. For the mobile learning
application a representative class of the
model is Test class. It manages the current
test, knows the current question and controls
the navigation between the questions of the
current test.
The view deals with the user interface and
user interaction. The mobile learning

Controller

View

Model

80 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.07

application includes three views: one with all
available tests (TestViewController class) one
for current question and the possible answers
(IntrebareViewController class) and the last
one display the list of users’ responses
(RaspunsuriViewController class).
The controller assures the link between the
view and the model. It handles the users’
actions on the interface, changes the model
state, and displays the requested views.
Usually for each view there is a controller.
The controllers of the mobile learning
application:
 handles users’ selections (tests and

answers);
 fills the lists and user controls with data

(questions, tests, answers etc.);
 shows other views when it is required by

users’ actions or by other normal or
exceptional situations (like displaying
error messages).

The user interface was implemented using
storyboards and Interface Builder. A
storyboard is a collection of scenes (views).
The scenes are connected by segues. Figure 4
depicts the scenes designed in Xcode for the
mobile learning application.

Fig. 4. Mobile learning application scenes within the storyboard file

In order to test and iOS application on a real
device the developers has to register to Apple
to iOS Developer Program [12]. A regular

registration requires an annual fee.
The mobile learning application was
developed using Xcode 5 with iOS 7 SDK on

Informatica Economică vol. 17, no. 4/2013 81

DOI: 10.12948/issn14531305/17.4.2013.07

OS X Mavericks.
The application was tested using the iOS
Simulator for an iPhone Retina (4-inch). The
current version does not make use of sensors
or camera and, for this stage, the simulator is
sufficient.

3 Web Services Access
Web services could be implemented using
SOAP and WSDL protocols or using REST
architectural style. REST services requires
the use of URLs and, if HTTP is used, HTTP
commands (GET, POST, DELETE etc.).
For the current application, the Web service
is based on SOAP and WSDL and it is
implemented using .NET technologies. The
Web service includes methods for obtaining
the number of tests, for obtaining the number
of questions for a test and for obtaining a
specific question based on its number and the
test number etc. The Web service is provided
with login possibilities for its users.
For iOS there are several approaches to
consume Web services:
 third-party, open source implementations

for consuming Web services like
RESTKit and Spaghetti or advanced
networking frameworks like
AFNetworking;

 developers own implementation of
libraries, classes or methods for Web
service communication using standard
networking classes like NSURLRequest
and NSURLConnection;

 third-party tools for proxy generation
using Web services URL, based on
WSDL, like wsdl2objc [13] and SudzC
[14].

The proposed solution uses a SOAP based
Web service and for current implementation
the wsdl2objc was used. Based on the Web
service address, using WSDL, the tool
generated all client files required to access
the Web service. The name of the Web
service is Service1 and the tool will generate
several files:
 some files required for network access

and result processing
 two files associated to the Web service: a

header file (Service1.h) and an
implementation file (Service1.m).

Table 1 presents several classes generated by
the wsdl2objc tool from the Web service and
theirs role.
As it can be seen, for each method of the
Web service are generated two classes: one
for method call and one for method’s result.

Table 1. Example of Web service generated classes using wsdl2objc

Class Role
Service1SoapBinding Defines the binding for the Web service
Service1SoapBindingResponse Manage the responses
Service1_GetNumarTeste Initiate the corresponding Web service’s method

GetNumarTeste
Service1_GetNumarTesteResponse Associated to the result of GetNumarTeste method

The classes are used to initialize the
connection, to call the Web service's methods
and to obtain the results.
Listing 1 represents a function used to call a
method of the Web service. The function is

implemented at a class level (static) and calls
the method GetNumarTeste provided by the
Web service, obtaining the number of tests
available on the assessment platform.

Listing 1. Example of a Web service access function
+(int) getNumarTeste :(int)idUser
{
 Service1SoapBinding* binding = [Service1 Service1SoapBinding];
 Service1SoapBindingResponse* response;

 //request initialization
 Service1_GetNumarTeste* request = [[Service1_GetNumarTeste alloc]init];

82 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.07

 //pass the parameter
 request.idUser = [NSNumber numberWithInt:-1];

 response = [binding GetNumarTesteUsingParameters:request];
 NSArray *responseBodyParts = response.bodyParts;
 id raspuns;

 @try
 {
 //get the response
 raspuns = [responseBodyParts objectAtIndex:0];
 }
 @catch (NSException* exception)
 {
 NSLog(@"getNumarTeste Exceptie: %@", exception.reason);

 return -1;
 }

 if ([raspuns isKindOfClass:[SOAPFault class]])
 {
 NSString* errorMesg = ((SOAPFault *)raspuns).simpleFaultString;
 NSLog(@"getNumarTeste Eroare: %@", errorMesg);

 return -1;
 }
 else
 if([raspuns isKindOfClass:[Service1_GetNumarTesteResponse class]])
 {
 Service1_GetNumarTesteResponse* nrIntrebResponse = raspuns;
 return nrIntrebResponse.GetNumarTesteResult.intValue;
 }
 //error
 return -1;
}

The method provided in Listing 1 is called
with the user id parameter:

nrTeste = [AccessSW getNumarTeste: uid];

AccessSW is the class that implements the
methods for Web service access.
The Web service calls are made
asynchronous in order to allow a continuous
interaction with the user interface, even for
time-consuming transactions.
Compared with the same implementation for
Android platform, that uses kSOAP,
wsdl2objc tool generates all the required
classes to use the Web service. This includes
the classes for complex results like questions
and their possible answers. The prototype of
the application for Android required the
implementation of these complex classes in
order to process the responses correctly.

4 The Mobile Learning Application
The application connects to a Web service in

order to obtain the questions and the variants
of responses. The request and responses are
made using plain XML content.
The application start screen is presented in
Figure 5. The available tests are displayed
like a list in a table control (from
UITableView class) and the user can choose
any test from the list. The associated
controller is derived from
UITableViewController and implements the
UITableViewDataSource (for data source)
and UITableViewDelegate (for handle user
interaction) protocols that are required when
working with tables.
UITableViewDataSource protocol requires
implementation of at least two methods
called when it needs to display table's data.
The methods provide information about the
number of section, the number of rows
within a section, header and footer titles etc.
UITableViewDelegate controls the way the
cells are displayed (cell height, custom

Informatica Economică vol. 17, no. 4/2013 83

DOI: 10.12948/issn14531305/17.4.2013.07

header and footer) and the user actions (click
in cell, cell content editing etc.).
The tests presented in Figure 5 are available
for one topic (mobile applications
development), but future versions of the
application will be extended for more topics.

Fig. 5. Initial application screen

The table has one section and the number of
rows is taken from the number of tests
available for the current topic in database.
These values are returned by the two
methods of data sources protocol used for
these controls:
numberOfSectionsInTableView and
numberOfRowsInSection.
The method cellForRowAtIndexPath,
provided by the same protocol, will initialize
the label of each row with test name. The
current implementation contains four tests
identified by corresponding numbers and the
label are initialized accordingly.
The list is initialized on viewDidLoad
message. In order to assure that all data
coming from the server will be available
before the list is displayed, Web service
methods calls are made using blocks as can
be seen from the code excerpt in Listing 2.
This will send the reloadData message to the
table so the user will see all required items
within the list.
The link between the cells and the next
screen is created in Interface Builder and the
transition is made without writing any line of
code.
After the user selects a test, the next screen
will display the first question from selected
test.

Listing 2. Excerpt for data loading in the UITableView control
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

if (_nrTeste > 0)
 {
 //initialize data model

 //reload table data
 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.tableView reloadData];
 });
});

The objects are sent between views in
prepareForSeque message, as can be seen

from Listing 3.

Listing 3. Parameter passing between views
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)sender
{
 ViewController *detailController = [segue destinationViewController];

84 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.07

 //selected cell
 UITableViewCell *cell = (UITableViewCell*)sender;
 //path to selected cell
 NSIndexPath *indexPath = [self.tableView indexPathForCell:cell];
 //questions controller initialization
 detailController.testCurent = [[Test alloc] init];
 //model members initialization
 detailController.testCurent.nrTest = indexPath.row + 1;
 [detailController.testCurent initNrIntrebariTest:
 [AccessSW getNumarIntrebariTest : detailController.testCurent.nrTest]];
 }

The navigation between the screens is
implemented in a standard way using the
UINavigationController. This is the
containing controller for the
TesteViewController.
The questions screen is presented in Figure 6.
The possible answers are displayed in a
control derived from UITableView class. The
selected answer is highlighted by setting the
cell's property accessoryType to
UITableViewCellAccessoryCheckMark. A
check mark is shown on the selected answer,
as it can be seen from Figure 6.
The toolbar buttons controls the navigation
between the questions. There are three
buttons:
 Precedenta – goes to the previous

question from the current test;
 Urmatoarea – goes to the next question;
 Gata – ends the test and display the given

answers.
The navigation between questions could be
implemented using gestures like swipe. This
could from left to right (for the previous
question) and from right to left (for the next
question). To return to the test list a back
button is provided by the standard navigation
controller.
The number of current question and the total
number of questions are displayed on the
view’s title.
The selected answers are stored in a
dedicated array in order to be checked
against the correct ones. The answer could be
sent to server at the end of the test or after
each response of the candidate.
The first option will send only the final
responses to the server. There is only one
request to the server related to candidate's
answer.

The last option has the advantage of keeping
the responses updated, but has to deals with
user changes and requires frequent network
access.
The responses are stored in a persistent data
structure in order to assure that data will be
recoverable in case that application crashes
or other unexpected situation occurs.

Fig. 6. Example of a question

After the candidate chooses to finish the test,

Informatica Economică vol. 17, no. 4/2013 85

DOI: 10.12948/issn14531305/17.4.2013.07

all the answers will be displayed on the
screen, Figure 7. Possible future actions will
be to allow the users to save the answers and
to send the answers by e-mail or to share
them using social networks. This requires
additional buttons that can be added on a
redesigned toolbar and/or on navigation
toolbar in a standardized way.

Fig. 7. The selected responses screen

The application does not provide user with
the correct answers, this feature is available
only for quizzes. The user will find the final
mark and will get only a statistic about his or
her answers (number of correct answers,
number of unanswered questions, number of
incorrect answers, percentage of answers per
each topic/subtopic etc.).

5 Conclusion and Future Work
Compared with de development of the

similar application for Android devices, the
first conclusion is that also there is no direct
support for Web services client and third
party tools have to be used.
Next application developments will focus in
design improvement. Also, the application
will be integrated with the components that
provide educational content to the students.
Also, the implemented Web services will be
extended to support JSON and/or XML
responses that are very popular and can be
easily processed.
Another important objective is to optimize
the amount of data sent between the client
and server. All questions and possible
answers can be transferred in one transaction,
this having impact on duration but resulting
in a smaller overhead. Also, data can be
compressed by the server and decompressed
on the device. This will increase the duration
on some method calls.

References
[1] M. H. Ferrer, J. Hodges and N.

Bonnardel, “The MoLE project: an
international experiment about mobile
learning environment,” Proc. of the 31st
European Conference on Cognitive
Ergonomics (ECCE '13), New York:
ACM, 2013

[2] D. G. de la Iglesia and D. Weyns,
“Guaranteeing robustness in a mobile
learning application using formally
verified MAPE loops,” Proc. of the 8th
International Symposium on Software
Engineering for Adaptive and Self-
Managing Systems (SEAMS '13),
Piscataway: IEEE Press, 2013, pp. 83-
92.

[3] D. Furió, S. González-Gancedo, M. C.
Juan, I. Seguí and N. Rando. “Evaluation
of learning outcomes using an
educational iPhone game vs. traditional
game.”, Computer & Education Vol. 64,
May 2013, pp. 1-23.

[4] P. Pocatilu, Developing Mobile Learning
Applications for Android using Web
Services, Informatica Economica, vol.
14, no. 3, 2010

[5] A. Reveiu, I Smeureanu and M. Dardala,

86 Informatica Economică vol. 17, no. 4/2013

DOI: 10.12948/issn14531305/17.4.2013.07

"Generating Multimedia Components for
M-Learning," Informatica Economică,
vol. 13, no. 3/2009, pp. 88-95

[6] A. Butoi, N. Tomai, D. Mican and G. C.
Silaghi, "Designing Effective Web-
Based M-Learning Systems," Proc. of
the IE 2013 International Conference,
Bucharest, 2013, pp. 126-130

[7] C. Boja and L Batagan, "Analysis of M-
Learning Applications Quality," WSEAS
Transactions on Computers, Issue 4,
Vol. 8, May 2009, pp. 767-777

[8] Gartner Says Smartphone Sales
Accounted for 55 Percent of Overall
Mobile Phone Sales in Third Quarter of
2013, [Online]. Available at:
http://www.gartner.com/newsroom/id/26
23415 (November 2013)

[9] P. Pocatilu, Programarea dispozitivelor

mobile, Bucharest: ASE Publishing
House, 2012

[10] M. Neuburg, iOS 7 Programming
Fundamentals, O’Reilly Media, 2013

[11] S. G. Kochan, Programming in
Objective-C, Fourth Edition, Pearson
Education, Inc., 2012

[12] Apple Developer, [Online]. Available at:
https://developer.apple.com/ (October
2013)

[13] wsdl2objc - Generates Objective-C
(Cocoa) code from a WSDL for calling
SOAP services [Online]. Available at:
https://code.google.com/p/wsdl2objc/
(October 2013)

[14] SudzC | clean source code from your
web services [Online]. Available at:
http://sudzc.com/ (October 2013)

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and
Economic Informatics in 1998. He achieved the PhD in Economics in 2003
with thesis on Software Testing Cost Assessment Models. He has published
as author and co-author over 45 articles in journals and over 40 articles on
national and international conferences. He is author and co-author of 10
books, (Mobile Devices Programming and Software Testing Costs are two
of them). He is professor at the Department of Economic Informatics and

Cybernetics within the Bucharest University of Economic Studies, Bucharest. He teaches
courses, seminars and laboratories on Mobile Devices Programming, Economic Informatics,
Computer Programming and Project Management to graduate and postgraduate students. His
current research areas are software testing, software quality, project management, and mobile
application development.

