
Informatica Economica, vol. 15, no.3/2011 163

Android Applications Security

Paul POCATILU
Bucharest University of Economic Studies

ppaul@ase.ro

The use of smartphones worldwide is growing very fast and also the malicious attacks have
increased. The mobile security applications development keeps the pace with this trend. The
paper presents the vulnerabilities of mobile applications. The Android applications and de-
vices are analyzed through the security perspective. The usage of restricted API is also pre-
sented. The paper also focuses on how users can prevent these malicious attacks and propose
some prevention measures, including the architecture of a mobile security system for Android
devices.
Keywords: Mobile Application, Security, Malware, Android, Reverse Engineering

Introduction
Today, mobile applications security is

very important taking in account the high
number of mobile devices and users. World-
wide, about one million people were infected
by mobile malware in the first semester of
2011 [1]. According to [2] only 4% of smart-
phones and tablets use antimalware and anti-
virus software and in the same period the
number of mobile applications containing
malware on marketplaces grew from 80 to
400 [3]. In [4] is presented a history of the
most important mobile malware and several
tools that can be used for malware analysis.
The market share of Android based devices is
increasing very fast and due to its open
source system many attackers are focusing
on it.
The objective of this paper is to present the
main aspects related to Android applications
security. Also, it is proposed a mobile system
architecture used to prevent mobile malware.
The paper is structured as follows.
The section Mobile applications security is-
sues presents the main concerns related to
mobile applications security and possible
negative effects.
Android Applications Security Model section
focuses on the main characteristics of Andro-
id security framework, focusing on the per-
mission system.
Accessing restricted API in Android presents
code examples used to access the SMS, loca-
tion, telephony and file system services in
Android applications.

The section Prevention Measures deals with
best practices to avoid the use of malicious
software on a mobile device. Also, there are
presented Android cryptography classes and
a practical example is given.
The paper ends with conclusions and future
work.

2 Mobile Applications Security Issues
Mobile devices are vulnerable to attacks as
any other computers even the number of at-
tacks is still reduced compared with personal
computers.
The following technologies that exist on
many mobile devices can be used by attack-
ers to send and/or receive confidential data,
malicious applications and to make unautho-
rized actions:
• Bluetooth – applications use it to connect

to other devices;
• Telephony – unauthorized phone calls are

made, resulting in high costs or unautho-
rized recordings;

• Messaging (Short or Multimedia Messag-
ing Services) – used to send confidential
content to attacker or to access paid num-
bers;

• Wireless networks – used to connect to
Internet to transfer data;

• NFC (Near Field Communication) – used
for unauthorized payments.

Data services are used in order to transfer
from and to malicious applications. The
Internet access allows sending/receiving e-
mail messages and unauthorized access to

1

164 Informatica Economica, vol. 15, no. 3/2011

Internet resources (Web sites, Web services,
Internet servers etc.)
The behavior of malicious applications could
vary from annoying messages to very unre-
coverable damages. The possible actions are:
• annoying messages;
• unwanted web pages opened;
• advertising popup;
• higher costs resulting from messages sent

(SMS, MMS), phone calls and payments;
• unauthorized use of personal information

data;
• confidential data transferred on a remote

location;
• altering data stored in file system, con-

tacts, messages etc.
Depending on the platform and/or operating
system, applications can:
• read and write contacts;
• read and write calendar entries;
• read short/multimedia messages;

• send e-mail messages, SMS and MMS;
• make phone calls;
• get location;
• access the internet;
• read and write on file system.
Not all operating systems and platform allow
all of these actions that can be dangerous if
they are used by a malicious application.
Also the user is not always informed about
these actions when install the application.

3 Android Applications Security Model
Android operating system is based on Linux
kernel so that applications isolation, the file
system and security rules are Linux specific.
As can be seen from Figure 1, users can inte-
ract with Android device using Linux shell
provided through adb tool. Usually develop-
ment devices have root access granted with
full rights, but this access is not available on
most of the Android devices.

Fig. 1. Android command line shell

Android applications files are packed in files
with apk extension. These files contain all
the classes and resources required by the ap-
plications [5]. The binary classes are con-
verted into a proprietary format for Dalvik
Virtual Machine (dex files). Usually, when
applications are launched for the first time,
the dex files are optimized and the resulting
files are stored in /data/dalvik-cache directo-
ry. When the same application is launched
again, the optimized code is loaded from that

special directory.
Each application runs in a separate virtual
machine, having its own unique identifier
(UID) Figure 2. Due to this, application re-
sources are protected from other applications
and the communication and data transfer be-
tween applications has a high degree of con-
fidence. Even so, applications could commu-
nicate each other using messages, this being
another source of threat.

Informatica Economica, vol. 15, no.3/2011 165

Fig. 2. Android applications

Android applications can be installed from
various sources, including:
• Android Market
• Alternative online shops
• Own developed applications
• Other sources: third-party developers,

unauthorized sites etc.
The applications published on Android Mar-
ket by the developers do not need approval
from Google like the application published
on App Store (Apple) or Marketplace (Mi-
crosoft).
Android applications need to be signed be-
fore they will publish on the Android Market.
The certificate can be generated using key-
tool and jarsigner Java tools manually or au-
tomatically. zipalign tool is used to optimize
the apk file after it has been signed [6].
Applications need user permissions in order
to access restricted API. According to [7],
application permissions fall in one of these
categories:
• normal - the features used by the applica-

tions don't presents any risk for applica-
tions or system and the user is not in-
formed when the applications is installed;

• dangerous – the application has capabili-
ties that, if used by malicious code, could
produce negative effects and the user
must be aware of these;

• signature – the applications need to be
signed and the signature has to be the
same as that used to define the permis-
sions;

• signature or system – this is required for
system applications (installed in system
folder) and it is not available for normal
applications.

All Android applications need users' permis-
sion in order to access potentially dangerous
features. All permissions required need to be
declared in application's AndroidManif-
est.xml file like this:

<uses-permission android:name=

"android.permission.INTERNET">
</uses-permission>

Table 1 presents several Android permissions
required to use restricted API.

Table 1 Android application permissions
Action Required Permission
Read and
write contacts

READ_CONTACTS
WRITE_CONTACTS

Read and
write Calendar
items

READ_CALENDAR,
WRITE_CALENDAR

Send SMS,
read and write
SMS

SEND_SMS, READ_SMS,
WRITE_SMS

Access the In-
ternet

INTERNET

Use the tele-
phony

CALL_PHONE

Access the ex-
ternal storage

READ_EXTERNAL_STORAGE
WRITE_EXTERNAL_STORAGE

Get location ACCESS_FINE_LOCATION,
ACCESS_COARSE_LOCATION

If the permissions are not included in the ap-
plication's manifest file, that will lead to a
run-time exception.
Android security model is based on these
permissions that the users have to be aware
in order to prevent malicious applications in-
stallation.

Linux kernel

Dalvik VM Dalvik VM Dalvik VM

Application 1 Application 2 Application n

166 Informatica Economica, vol. 15, no. 3/2011

Fig. 3. Android applications installation process

Figure 3 depicts the process of application
installation on an Android device. If the user
doesn't accept the permissions required by
the applications the installation process will
end, otherwise the application will be in-
stalled on the device.
Also, applications can define custom permis-
sions that can be use to access their re-
sources. The permission access is similar and
these have to be declared in application's
manifest file.
Attackers write their own applications or
modify existing ones by reverse engineering.
For example, an existing application pub-
lished on Android Market could be modified
and malicious code inserted and published on
the Market with a different name or on a pub-
lic Web site. After an Android package is
modified (apk file) it has to be signed again.
There are specialized tools for decompiling,
modification and compiling Android binary
files such as:
• APKTool [8] – used for compile and de-

compile apk files; resources and xml
files can be modified easily;

• smali [9] – assembler and dissasembler
for Dalvik binary files (dex files);

• dex2jar [10] – converts Dalvik binary
files (dex files) into Java archives (jar
files) that contain standard Java class
files;

• JD-GUI [11] – decompile a class file into
a Java source file.

These tools and similar ones are also used for
malware analysis.

4 Accessing restricted API in Android
All restricted API used in Android applica-
tions requires permissions due to potentially

dangerous consequences when used by mali-
cious code. Attackers could use very easily in
their malicious code the services provided by
the:
• SMS and MMS;
• e-mail system;
• telephony;
• personal information system (calendar,

contacts);
• file system;
• location providers.
In this respect, several examples will be pro-
vided.
In order to send SMS, after the SmsManager
is initialized, the message is immediately sent
as follows:

SmsManager mesaj =
 SmsManager.getDefault();
mesaj.sendTextMessage("1234", null, "SMS
de test", null, null);

If the default settings are used, the not null
parameters are the phone number and the
message text. This code doesn't tell anything
about the operation success. It has to be im-
plemented with specific intents. The user is
not aware about the success or failure of this
action (sent or delivered).
Malicious application can install a Broadca-
stReceiver for incoming messages in order to
get access to private information. As the
messages arrive, they are received by the ma-
licious application and processed. An exam-
ple of this type of receiver is presented in the
next section.
In order to make a phone call, the specia-
lized activity needs to be called: dialer or
call. The code is similar to this:

Android-
based
device

Accept
Android

application
Application's
permissions

User
decision

Reject

Informatica Economica, vol. 15, no.3/2011 167

Uri nrTel = Uri.parse("tel:1234");
Intent apelTel =
 new Intent(Intent.ACTION_DIAL, nrTel);
startActivity(apelTel);

or

Uri nrTel = Uri.parse("tel:1234");
Intent apelTel2 =
 new Intent(Intent.ACTION_CALL, nrTel);
startActivity(apelTel2);

In both cases user will be aware of the calls if
he or she looks at the screen.
For accessing the external storage, the appli-
cation needs to have permission also (like
WRITE_EXTERNAL_STORAGE). The fol-
lowing code is used to write a file on the ex-
ternal storage:

try
{
//get the external storage state
String stareSD =
Environment.getExternalStorageState();

//if it is mounted
if(stareSD.equals(Environment.MEDIA_MOUN
TED))
{
 //get the directory
 File rootSDDir = Environment.

getExternalStorageDirectory();

 if (rootSDDir != null)
 {
 //read and write files
 }
}
catch (IOException ex)
{ Log.e("PDM1", ex.getMessage()); }

It is important to check the status of external
media to avoid exception.
To access the location the GPS and network
can be used. The location providers will send
to associated listener the device location:

//initialization
LocationManager locationManager = (Loca-
tionManag-
er)getSystemService(Context.LOCATION_SER
VICE);

//associate the listener
locationManager.requestLocationUpdates(
LocationManager.GPS_PROVIDER, 0, 0, lo-
cationListener);

//...

//location listener implementation
LocationListener locationListener = new
LocationListener()
{
@Override
public void onLocationChanged(Location
poz)
 {

if (poz != null)
 {
 //use location:

 //poz.getLatitude(
 //poz.getLongitude()

 //poz.getAltitude()
 //etc.
}

}
//...
}

The ACCESS_FINE_LOCATION permission
is required to run the code properly. If the
GPS is unavailable, the LocationManag-
er.NETWORK_PROVIDER can be used, but
with less accuracy.
In [12] is presented an example of an Andro-
id application that uses Web services to
access remote data. The Web services could
be hosted on the attacker's servers and to be
used to upload users' private data collected
using some of the presented examples.

Fig. 4. Application permissions screen

168 Informatica Economica, vol. 15, no. 3/2011

Figure 4 shows an example of an installation
process, when the user is informed about the
permissions required by the application.
These permissions are required when using
some of code presented above.
If the user is not sure about the application he
or she can cancel the installation process.
Another potential risk is the possibility to
access the native code using NDK.

5 Prevention Measures
Installation from trusted sources and based
on other users reviews and scores is very im-
portant when installing an applications. If
there will be complaints from users regarding
the spyware or malware built in the applica-
tion the users will be informed.
Users have to read carefully the application
permissions and if they have doubts regard-
ing the application intentions they have to
cancel the installation. It is very important
for users to know the permissions with higher
risks and to check them with the application's
features.
Many free applications require full Internet
access for advertising.

Another option is to install applications that
monitor the system for malicious code pre-
venting the infections. The number of these
applications is growing due to increase num-
ber of malicious attack.
One solution will be to encrypt their users'
sensitive data using specialized applications
or using their own applications. Such kind of
system can encrypt and decrypt data on re-
quest or they can monitor services and activi-
ties and make these actions on the fly, as data
arrive (SMS, e-mails, SQLite databases inter-
rogations, files etc.).
Figure 5 shows the components of the pro-
posed system. Messages sent by the system
or applications are intercepted by specialized
broadcast receivers implemented as services
(or applications). Received data is encrypted
and stored in a database or on the external
storage. Some of the intercepted messages
are not delivered to default applications in
order avoid to write plain data on the file sys-
tem or databases. When data is required by
some applications, it is extracted from the
SQLite databases, decrypted, and sent to
those applications.

Fig. 5. Cryptographic system architecture

In order to encrypt and decrypt data, classes from javax.crypto package can be used.

Service
BroadcastReceiver

Service
BroadcastReceiver

Service
BroadcastReceiver

Storage
(encrypted and

plain data)

Databases
(encrypted data)

Applications

System

Replaced
applications

Informatica Economica, vol. 15, no.3/2011 169

The package includes classes for symmetric
key cryptography (AES, DES), public keys
encryption (RSA, DH) and message digests
(MD5, SHA-1 etc.).
The following example uses DES algorithm
(with ECB mode and PKCS#5 padding

scheme) to encrypt and decrypt strings. Be-
cause it uses strings as parameters it is neces-
sary to convert to ASCII characters only the
encrypted text in order to maintain its integri-
ty [13].

import javax.crypto.*;
import org.kobjects.base64.Base64;

class SecCD
{
 public static String decripteazaDES(String sir, SecretKey cheie)
 {
 String sirDecriptat = null;

 try
 {
 Cipher cifDecriptare = Cipher.getInstance("DES/ECB/PKCS5Padding");
 cifDecriptare.init(Cipher.DECRYPT_MODE, cheie);
 sirDecriptat = new String(cifDecriptare.doFinal(Base64.decode(sir)));
 }
 catch(Exception ex)
 { Log.e("PDM1", ex.getMessage()); }
 return sirDecriptat;
}

 public static String cripteazaDES(String sir, SecretKey cheie)
 {
 String sirCriptat = null;

 try
 {
 Cipher cifCriptare = Cipher.getInstance("DES/ECB/PKCS5Padding");
 cifCriptare.init(Cipher.ENCRYPT_MODE, cheie);
 sirCriptat = Base64.encode(cifCriptare.doFinal(sir.getBytes("UTF8")));
 }
 catch(Exception ex)
 { Log.e("PDM1", ex.getMessage()); }
 return sirCriptat;
 }
}

The class SecCD is used for encryption and
decryption as follows:

try
{
 //secret key is generated here
 SecretKey cheie =

KeyGenerator.getInstance("DES").
generateKey();

 //plain text to be encrypted
 String mesajDeCriptat =
 "Criptare cu DES";
 //encrypted text
 String mesajCriptat =
 SecCD.cripteazaDES(

mesajDeCriptat, cheie);
 //decrypted text
 String mesajDecriptat =

SecCD.decripteazaDES(mesajCriptat,
cheie);

}

catch(Exception ex)
{ Log.e("PDM1", ex.getMessage());}

Using a similar approach all confidential data
can be encrypted on the device. The classes
could be easily adapted to be used with file
streams and arrays of bytes.
The encryption will be applied for example
to text and e-mail messages. In the following
example an SMS receiver is implemented in
order to get the messages before any other
application:

private String SMS_RECEIVED_ACTION =
"andro-
id.provider.Telephony.SMS_RECEIVED";

BroadcastReceiver br = new BroadcastRe-

170 Informatica Economica, vol. 15, no. 3/2011

ceiver()
{
public void onReceive(Context context,
Intent intent)
{

 String act = intent.getAction();
 if(act.equals(SMS_RECEIVED_ACTION))
 {
 Bundle contMesaj = intent.getExtras();

 if (contMesaj != null)
 {
 Object[] cont =
 (Object[])contMesaj.get("pdus");
 SmsMessage mesaj =
 SmsMessage.createFromPdu(
 ((byte[])cont[0]));

 //here we encrypt the message
 // mesaj.getMessageBody()
 //stop broadcasting the message
 abortBroadcast();
 }
 }
}
}

Before register the receiver, an IntentFilter is
initialized with the required action
(SMS_RECEIVED) and the priority is set to a
higher value in order to receive the message
before other applications:

IntentFilter smsFilt =

new IntentFilter();
//higher priority
smsFilt.setPriority(1000);
smsFilt.addAction(SMS_RECEIVED_ACTION);
this.registerReceiver(br, smsFilt);

It is important to unregister the receiver when
it is not needed anymore. This is done by
calling:

unregisterReceiver(br);

In order to work, the SMS_RECEIVE permis-
sion is required.
It is very important to focus on quality espe-
cially when building this type of application.
In [14] and [15] is analyzed this aspect and
several quality metrics were developed.
These metrics helps to obtain high quality
mobile applications.
The disadvantage of this security system is
that it could slow down the system and may-
be, some applications have to be replaced
with similar ones.

6 Conclusions and future work
Mobile applications security is very impor-
tant today due to increasing number of users
and the importance of personal and confiden-
tial data stored on mobile devices.
Users' role is very important in reducing se-
curity threats. They have to be aware about
the risks they expose when installing applica-
tion from unknown or unsafe sources. Also,
users have to pay attention when they install
application to permission required by the ap-
plications. If the applications don't suppose
to need some kind of permission the installa-
tion process has to be cancelled.
It is very important to remember that an im-
portant source of infection with malware is
through the Web browser.
The system security can be improved by us-
ing specialized applications. Another option
is to write applications that will encrypt and
decrypt all private data as they are accessed
in order to assure its confidentiality.

Acknowledgements
This work was supported by CNCSIS –
UEFISCSU, project number PNII – IDEI
2637/2008, project title: Project management
methodologies for the development of mobile
applications in the educational system.

References
[1] The Associated Press, Smartphone malware

infections growing fast [Online]. Available
at: http://bulawayo24.com/index-id-
technology-sc-mobile+phone-byo-6321-
article-Smartphone+malware+infections+
growing+fast+.html (August 2011)

[2] J. Leyden, Mobile app malware menace
grows [Online]. Available at:
http://www.theregister.co.uk/2011/08/04/
mobile_malware_trends/ (August 2011)

[3] J. Scott, Mobile devices in danger of at-
tack, [Online]. Available at:
http://www.itpro.co.uk/634240/mobile-
devices-in-danger-of-attack (August
2011)

[4] H. Dwivedi, C. Clark and D. Thiel, Mo-
bile Application Security. New York:
McGraw-Hill, 2010, pp. 364-389

Informatica Economica, vol. 15, no.3/2011 171

[5] E. Burnette, Hello, Android: Introducing
Google’s Mobile Development Platform,
3rd Edition. The Pragmatic Bookshelf,
2010, p. 33.

[6] The Developer's Guide | Android Develop-
ers [Online]. Available at:
http://developer.android.com/guide/index.ht
ml (March 2010)

[7] R.styleable | Android Developers [On-
line]. Available at:
http://developer.android.com/reference/a
ndro-
id/R.styleable.html#AndroidManifestPer
mission_protectionLevel (July 2011)

[8] android-apktool project [Online]. Available
at: http://code.google.com/p/android-
apktool/ (July 2011)

[9] smali project [Online]. Available at:
http://code.google.com/p/smali/ (July 2011)

[10] dex2jar project [Online]. Available at:
http://code.google.com/p/dex2jar/ (July

2011)
[11] JD-GUI | Java Decompiler [Online]. Avail-

able at:
http://java.decompiler.free.fr/?q=jdgui

[12] P. Pocatilu, "Developing Mobile Learn-
ing Applications for Android using Web
Services," Informatica Economică, Vol.
14, No. 3, pp. 106-115, September 2010

[13] J. Andress, The basics of information
security: understanding the fundamentals
of InfoSec in theory and practice. Syn-
gress, 2011

[14] C. Boja and L. Batagan, “Analysis of M-
Learning Applications Quality,” WSEAS
Transactions on Computers, issue 4, vol.
8, May 2009, pp. 767-777

[15] C. Ciurea, "A Metrics Approach for
Collaborative Systems," Informatica
Economica, vol. 13, no. 2, pp. 41-49,
June 2009.

Paul POCATILU graduated the Faculty of Cybernetics, Statistics and Eco-
nomic Informatics in 1998. He achieved the PhD in Economics in 2003 with
thesis on Software Testing Cost Assessment Models. He has published as au-
thor and co-author over 45 articles in journals and over 40 articles on nation-
al and international conferences. He is author and co-author of 10 books,
(Software Testing Costs, and Object Oriented Software Testing are two of
them). He is associate professor in the Department of Economic Informatics

of the Academy of Economic Studies, Bucharest. He teaches courses, seminars and laborato-
ries on Mobile Devices Programming, Economic Informatics, Computer Programming and
Project Management to graduate and postgraduate students. His current research areas are
software testing, software quality, project management, and mobile application development.

