
Informatica Economică vol. 15, no. 2/2011 119

A Windows Phone 7 Oriented Secure Architecture for Business
 Intelligence Mobile Applications

Silvia TRIF1, Adrian VIŞOIU2

1Academy of Economic Studies, Bucharest, Romania,
2Economic Informatics Department, collaborator
silviatrif@gmail.com, adrian.visoiu@csie.ase.ro

This paper present and implement a Windows Phone 7 Oriented Secure Architecture for
Business Intelligence Mobile Application. In the developing process is used a Windows Phone
7 application that interact with a WCF Web Service and a database. The types of Business
Intelligence Mobile Applications are presented. The Windows mobile devices security and
restrictions are presented. The namespaces and security algorithms used in .NET Compact
Framework for assuring the application security are presented. The proposed architecture is
showed underlying the flows between the application and the web service.
Keywords: Security, Secure Architecture, Mobile Applications, Business Intelligence, Web
Service

Business Intelligence Mobile
applications

The new achievements in mobile device
technologies opened the way for new
applications designed to run on mobile
devices. In the beginning, mobile devices
offered very limited functionality due to
small memory, computing power and
difficult interaction. Nowadays, mobile
devices become more and more popular,
available memory grew considerably, being
comparable with some desktop computers,
mobile processors have improved
performance, interaction is becoming more
user friendly. These characteristics allow the
development of complex applications that
make use of available hardware capabilities.
Business Intelligence applications help
managers to make decisions based on
quantitative methods applied to available
business data. Mobile business intelligence
applications extend such functionality on
devices used by the decision makers [1].
Such applications take several forms:
− standalone applications; these run

entirely on the mobile device and do not
depend on an external entity to realize
their functionality; such applications
offer independence to the user as they do
not need network access; a disadvantage
is represented by the difficulty to feed
data to the application and the lack of

processing power compared to a PC or an
application server; standalone
applications are recommended for
solving small size problems or obtain a
skeleton for solving bigger problems;

− network applications; these applications
have distributed components; some
components reside on the mobile device
and other components reside on external
systems; a network application may
obtain the data to be processed from a
server or a web service and may store the
results on the external system; also, data
and results may be obtained and stored
from the device itself as a standalone
application; the problems solved are of
medium complexity;

− web applications; these applications only
render the interface on the mobile
device; all the application logic takes
place on external application servers;
these applications are totally dependent
on the network access but the complexity
of the solved problem is high as all the
processing is done on powerful machines.

When using business intelligence mobile
applications the user accesses sensitive data
from the inside of its organization. Also, the
obtained results under the form of reports are
sensitive information that must be protected.
In this scenario, security becomes an
important aspect that has to be

1

120 Informatica Economică vol. 15, no. 2/2011

considered.Each type of mobile application
has particular characteristics and security is
implemented in specific ways.

2 Windows Mobile devices security and
restrictions
There are numerous mobile platforms, each
of them having specific characteristics,
specific functionality and specific API that
may be used to develop secured applications.
Of these, the windows phone 7 platform is
chosen to develop secured Business
Intelligence Mobile Applications. An
inventory is performed to discover the
elements that contribute to secured
application development.
In the mobile applications development
process are taken into account the following
concepts: sandbox, isolated storage, the
cryptographic elements and the permissions.
The sandboxing model for applications on
the phone means that third party applications
are not allowed to run in the background,
applications can only access their own
isolated storage and they cannot directly
interact with user data and phone
functionality.
Isolated Storage provides safe client-side
storage for partial trust applications; it
enables managed applications to create and
maintain local storage. Isolated storage is a
space assigned to every application where
this can read or write files. Other applications
do not have access to another isolated storage
than its own[2].
For developers there is special API in the
.NET Compact Framework to address
security elements, found in the namespaces
[3]:
− System.Security.Cryptography provides

cryptographic services related to
encrypting and decrypting of data and
related operations;

− System.Security.Permisions defines
classes that control access to operations
and resources based on policy;

− System.Security.Principal defines a
principal object that represents the
security context under which code is
running, related to role-based security.

A number of encryption algorithms are
implemented [4]:
− AES - represents the abstract base class

from which all implementations of the
Advanced Encryption Standard (AES)
must inherit;

− AesManaged - provides a managed
implementation of the Advanced
Encryption Standard (AES) symmetric
algorithm;

− CryptoStream - defines a stream that
links data streams to cryptographic
transformations;

− Hash Algorithm - represents the base
class from which all implementations of
cryptographic hash algorithms must
derive;

− HMAC - represents the abstract class
from which all implementations of Hash-
based Message Authentication Code
(HMAC) must derive;

− HMACSHA1,SHA256 - computes a
HMAC using the SHA1and SHA256
hash functions;

− Rfc2898DeriveBytes - implements
password-based key derivation
functionality, PBKDF2, by using a
pseudo-random number generator based
on HMACSHA1;

− SHA1, 256 - computes the SHA1 and
SHA256hash for the input data;

− SHA1, 256 Managed - computes the
SHA1 and SHA256hash for the input
data using the managed library;

− Symmetric Algorithm - represents the
abstract base class from which all
implementations of symmetric algorithms
must inherit.

Secure communication with external servers
uses SSL but this approach requires that a
certificate issued by a recognized authority is
installed on the device. This implies
additional costs for achieving security.
It is observed that Windows Phone 7
platform offers enough elements to
implement complex secured mobile
applications.

Informatica Economică vol. 15, no. 2/2011 121

3 Secure architecture for Business
Intelligence Mobile Applications
A Business Intelligence Mobile Application
is considered. The following hypotheses
about the application are made:
− only authenticated users may access the

application;
− the application offers the possibility to

download external data from a server
inside the organization via web services,
also data can be uploaded to the server;

− the application saves final and
intermediary results as well as reports on

the device and also can upload them to
the external server;

− the application performs various
processing on primary data.

Taking into account the hypotheses made, a
security architecture is built. The proposed
architecture must comply withthe
functionality of the application and the
restrictions given by the platform where it is
implemented.
The deployment of the proposed application
architecture is given in Figure 1.

Fig. 1. The deployment of the proposed application architecture

It is observed that from the application
development point of view, the key points
where security is involved are:
− access to application; an authentication

method must be implemented to grant
access only for a specific users;

− storage of data; data must be stored
encrypted in order to avoid access from
other than authorized users;

− data transfer via the network; network
traffic can be captured but an eventual
intruder must not be able to understand
the exchanged content.

The proposed architecture has the following
elements:

− a solution with symmetric key is taken
into account;

− a central authority within the organization
issues a password Pu for each user u; the
authority securely stores the passwordand
also the user has the responsibility of
keeping it secret;

− the issued password is used by the user to
access the application;

− inside the application, the password is
used to derive the key Ku used to encrypt
and decrypt data on the Isolated storage;

− when communicating with the web
services, the key Ku is used first to
authenticate the user to the web service in

Web Service

App

App

Upload

u1

u2

u1

Isolated
storage

Isolated
storage

E(rnd,u1)

D(E(rnd,u1),k1)

authenticated

u2

D(E(rnd,u2),k2)

authenticated
E(rnd,u2)

Download

Database

122 Informatica Economică vol. 15, no. 2/2011

an authentication dialog and later, after
the user is authenticated, to exchange
encrypted data with the web service.

The authentication dialog consists of the
following steps:
− the application connects to the web

service sending the username;
− the web service responds with a random

string encrypted with the key
corresponding to the received username;

− the application uses the key to decrypt the
random string and sends it back to the
web service;

− the web service compares the received
string with the generated random string;
if they are equal the user is authenticated;

− after authentication the application can
access the interface of the web service.

In Figure 2 is presented the authentication
dialog between the application and the web
service.

Fig. 2. The authentication dialog between the

application and the web service

The transferred data between the application
and the web service is saved on device, in the
Isolated Storage that corresponds to the
application. After the authentication process
ends with success, the data is saved on the
Isolated Storage. The process of saving the
data into the Isolated Storage consists on the
following steps:
− the application send a request to the web

service to get the data that is needed;
− the web service verify if the user is

authenticated and if it is authenticated,
the service responds with the encrypted
data, else it responds with a message;

− in the case of successful authentication,
the application access the Isolated
Storage and sends the encrypted data to
be saved;

− the Isolated Storage send back a message
that the saving process has ended
successfully.

In Figure 3 is presented the process of saving
data to the Isolated Storage.

Fig. 3. The process of saving data to the Isolated Storage

The data can be saved also on the server,
using the web service, not only on the device.

In the case that the user wants to upload a
file from the Isolated Storage to the web

Informatica Economică vol. 15, no. 2/2011 123

service, the application get the file from the
corresponding Isolated Storage, the file is
encrypted with the user’s correspondent key
and send it to the web service, where the file

is saved. All the files saved into the Isolated
Storage are encrypted with the user’s key.
This process is shown in Figure 4.

Fig. 4. The process of saving data to the web service

The storage of data on the device implies
encrypting the contents with the Ku key and
writing data. There is the case when the
password is lost or needs to be changed. In
this case, both the old Ku key and the new
Ku’ key are needed. All the encrypted data in
the storage must be decrypted with the old
Ku key and the clear data must be encrypted
with the new Ku’ key. The user cannot
change the password on its own without
notifying the authority. In the case when the
password is changed on the application side,
then it will not match the password stored by
the security authority and the user will never
get authenticated when connecting to the web
service.
The process of changing the password
consists on the following steps:
− the user notify the central authority that

he lost the password or wants to change
it;

− the central authority generate a new
password Pu’ for the user and send it to
the user;

− using the new password Pu’ the
application connect to the web service ,
which send the old password Pu
encrypted, these steps are not visible to
the user;

− using the old encrypted password Pu, the
application access and decrypt the
Isolated Storage and encrypt it back using
the new Pu’ password; the old password
is invisible to the user.

In Figure 5 is presented the process of
changing the password. Only the central
authority can change the password, and the
changing process is not an everyday task.
The user must keep in a secure place the
password.
A secure architecture for M-learning mobile
applications is presented in [5].

124 Informatica Economică vol. 15, no. 2/2011

Fig. 5. The process of changing the password

4 Practical implementation of the propos
architecture
The practical implementation developed to
implement the proposed security architecture
consists of a Windows Phone 7 application
and a WCF web service.
On the device side the inputs and outputs are
encrypted and decrypted using the AES
symmetric algorithm. The data used by the
application are received and saved using Xml
format. For the security component found
inside the application this type of data is
handled via String data type. There are
implemented methods for encrypting and

decrypting a string and for saving and
loading a string to a file and from a file.
Regarding network traffic,a proxy class
references the web service. The web service
exposes methods both for authentication and
for data exchange. Every data exchange
method checks if the user is authenticated.
All the content exchanged between the
application and the web service is encrypted
with Ku key.
In Table 1 is presented an excerpt of network
capture of the data exchange between the
application and the web service.

Table 1. A network capture of the data exchange between the application and the web service
No. App Service
1 <StartAuthenticationS ..>

<uservalue>user1</uservalue>
</StartAuthenticationS>

2 <StartAuthenticationSResponse
..><StartAuthenticationSResult>
DCRv5VoXrJ59gBX2TQ+lqw==
</StartAuthenticationSResult>
</StartAuthenticationSResponse>

3 <FinishAuthenticationS><clarvalue>7234152</
clarvalue></FinishAuthenticationS>

4 <FinishAuthenticationSResponse><FinishAuthenticatio
nSResult>true
</FinishAuthenticationSResult></FinishAuthenticationS

Informatica Economică vol. 15, no. 2/2011 125

Response>
5 <GetDataS><value>dataset1</value>

</GetDataS>

6 <GetDataSResponse><GetDataSResult>you get the
data</GetDataSResult></GetDataSResponse>

The steps followed in the process of using
the application that are seen in table 1 are:
− the application start the authentication

process by sending the username
“user1”to the web service;

− the web service generate a random
“7234152” which is encrypted using the
corresponding password for
user1(DCRv5VoXrJ59gBX2TQ+lqw==)
and sent to the application;

− the application decrypt the received value
and finish the authentication process by
sending to the web service the decrypt
value obtained: 7234152;

− the received value is compared to the
random value and the IsAuthenticated
value is set to true, the user1 is
authenticated;

− the application request the dataset1 data
to the server, by using the GetDataS
method;

− the user1 gets the data that he was asking
for from the web service.

The authentication sequence source code is
represented by the following functions:
− StartAuthentication: is called when the

process of authentication starts. A new
user is add to the current session, using
the password of the user, a generated
random , in this case, “7234152” is
encrypted:
….
HttpContext.Current.Session.Add(userv
alue, 1);
stringrezEncrypt=null;
switch (uservalue)
 {
case"user1":
rezEncrypt = EncryptString("7234152",
parole[0]);
 _random =
"7234152";
username = "user1";
break;

….
 }

− StartAuthenticationSCompleted take
place when the process of start
authentication finish. The result obtained
in the StartAuthenticationS method is
decrypted, using the user password and
theFinishAuthenticationSCompletedMeth
od is called, where the user authenticity is
validated. The call to the web service is a
asynchronous call, there are processes
that happens when the process start and
when the process finish:
…

voidclserv_StartAuthenticationSCompleted
(object sender,
ServiceReference1.StartAuthenticationSCo
mpletedEventArgs e)
 {
rnd = e.Result;
clar = DecryptString(rnd, parole[0]);
clserv.FinishAuthenticationSCompleted +=
newEventHandler<ServiceReference1.Finish
AuthenticationSCompletedEventArgs>(clser
v_FinishAuthenticationSCompleted);
clserv.FinishAuthenticationSAsync(clar);
 }

− FinishAuthenticationS and
FinishAuthenticationSCompleted: these
two functions determine if the user is
authenticated or not and allow the user to
access the following elements of the web
service, to access the data via GetDataS
method.

..
if (username == "user1"&&clarvalue ==
"7234152")
IsAuthenticated = true;
else
IsAuthenticated = false;
returnIsAuthenticated;
..

voidclserv_FinishAuthenticationSComplete
d(object sender,
ServiceReference1.FinishAuthenticationSC
ompletedEventArgs e)
 {
IsAuthenticatedLocal = e.Result;
if (IsAuthenticatedLocal == true)
 {
MessageBox.Show("autenticat");
clserv.GetDataSCompleted +=
newEventHandler<ServiceReference1.GetDat

126 Informatica Economică vol. 15, no. 2/2011

aSCompletedEventArgs>(clserv_GetDataSCom
pleted);
clserv.GetDataSAsync("dataset1");
 }
else
MessageBox.Show("non-autenticat");
 }

For accessing a method of the web servicethe
following source code is used:

ServiceReference1.Service1Clientmyclient
= newServiceReference1.Service1Client();
string s = "sss";
myclient.OpenCompleted +=
newEventHandler<System.ComponentModel.As
yncCompletedEventArgs>(myclient_OpenComp
leted);
myclient.OpenAsync(s);

A reference to the web service is declared
and the asynchronous process is started:
calling the OpenCompleted method and then
the OpenAsync method.
The capacity of the web service to respond to
an asynchronous call allows the
multithreading process. The thread that
initiates the asynchronous call can respond to
any operation while the method finished[7].
Regarding the implementation of the web
service, there are two available options
related to the state.
When using a web service with associated
object lifetime per session for each new
client application, a new web service object
is created. This object deals with all the
requests from that client, and is destroyed at
the end of the dialogue session. If a large
number of clients connect to the web service
then a large number of objects would be
created.
In Figure 6 is presented the instantiation of
the per session web service.

Fig. 6.The Instantiation of Per Session web

service [6]

The following source code represents the
way of setting the behavior of the web

service to per session
[ServiceBehavior(InstanceContextMode =
InstanceContextMode.PerSession)].

The application server would need enough
resources to cover all the requests. On the
other hand individual clients are treated
independently of other connected clients
without synchronization problems.
When using a web service with associated
object lifetime single session, then a single
web service object is allocated. This is
friendly with the application server’s
resources as only one object is created and
maintained in memory.
The instantiation of the single session web
service is presented in Figure 7.

Fig. 7. The Instantiation of Single Session

web service

The following source code represents the
way of setting the behavior of the web
service to single session
[ServiceBehavior(InstanceContextMode=Ins
tanceContextMode.Single)].

The problem arising with this approach is the
synchronization of user requests. For each
request made to the web service’s methods
the user identifies itself. At web service level,
a user map has to be kept to store the each
user’s state, whether it is connected,
authenticated or denied access. Regardless of
the implementation the exposed functionality
remains the same. There are some
peculiarities that make the single session
approach as it does not require reliable
session binding which adds extra
configuration in the service development.

5 Risks related to the proposed
architecture
The proposed architecture contains several
interconnected components exposed to
security risks:
− standalone mobile application: at this

level, the executable is present along with

Informatica Economică vol. 15, no. 2/2011 127

configuration files and the most
important, the data files

− communication channel: at this level, the
network connecting the two endpoints
carries the exchanged data

− web service level: at this level, there is
the application server and the database
server.

At each architecture level, several scenarios
are considered to assess the strength of the
proposed architecture.
A first scenario takes into account attacks at
application level. There is protection to
rewriting applications on WP7 platform but
on a development enabled phone there is the
possibility of updating the executable with a
modified version that could expose access to
the Isolated Storage. In this case the
protection is given by the fact that the files
stored by the application are encrypted with
the key derived from the user password
which is never stored. Without the key, found
data is unintelligible for the attacker. More
protection is achieved if file names or paths
do not contain suggestive clues about the
contained information.
A second scenario takes into account the
communication channel between the mobile
application and the web service residing on
the application server. An attacker may
intercept the data packets exchanged between
the two entities. In this case the fact that the
content is encrypted protects the data from
being understood. There is some information
that is sent unencrypted, as seen in Table 1,
related to the web service communication
protocol, the user identifier, the random
number and also the XML tags of the
message corresponding to the service
internals. However this data is insufficient to
derive encrypted content.
A third scenario is also taken into account at
network level. A man in the middle case
implies the presence of a third entity that
exposes itself as the other party to each of the
endpoints. This may cover the authentication
process where the mobile application
exchanges the random with the web service.
The user may see itself as authenticated and
also the web service may see the user as

authenticated but the “you get the data”
portion of the dialog is encrypted. The third
party cannot send false data to the application
on behalf of the web service as the data must
be encrypted with the symmetric key;
otherwise it cannot be decrypted by the user.
The third party may request data from the
web service on behalf of the application but
the received data is encrypted with the
symmetric key. In this case, only a denial of
service can be achieved by a third party in
the middle of the dialog.
A fourth scenario takes into account the
application server and the associated
database. At this endpoint of the
communication there is concern about storing
the password. As the application server is
likely to be found inside the organization the
security issues are related to the security of
the organization itself. The password is not
stored at mobile application level as the risks
are high on this side. The password has to be
stored by the issuer at organization level as
this helps restoring saved data from the
device as seen in the case of lost password.
The storage of the password has to be done in
a secure manner in the database with respect
to database security rules and
recommendations.
As seen, the proposed architecture is solid
enough from security point of view, to assure
the protection of data in scenarios where
harmful intentions are present.
Advantages of the proposed architecture are:
− easy to implement;
− reduced costs as no certificate has to be

bought by the organization;
− good protection in common cases of

attacks.
Disadvantages of the proposed architecture
are:
− the password has to be retained by the

user and is prone to be lost, divulged or
forgotten;

− it is customized for the Windows Phone
7 platform;

− the strength is given by the strength of
the key derived from the password; for
highly sensitive data it is recommended
to use more secure architectures.

128 Informatica Economică vol. 15, no. 2/2011

Overall the security level offered by the
architecture related to the complexity its
implementation makes it fit for applications
were data security is important not to divulge
sensitive information between users of the
same service but not the primary requirement
but not against heavy attacks from computer
experts.

6 Conclusions
Assuring a secure architecture for Business
Intelligence Mobile Applications has an
important role in the security development
process. Assuring the implementation of
secured methods on the web service used and
on the application developed for Windows
Phone 7 a high degree of securityis obtained.
The proposed architecture is able to offer a
reasonable protection for the data exchanged
between the client application and the web
service. Also, the data is secured both on the
device and at application server level. The
security level obtained is fit to protect data
between application users. The proposed
architecture is cheap to implement as it does
not require a certificate issued by a known
authority nor an unsigned certificate
generated by the organization. The
architecture is designed for Windows Phone
7, but many elements may be shared with

other platforms: the web service is a common
element that does not affect the mobile
application, also the protocol how the
methods are called is easily implemented on
other platforms; only the Isolated Storage is
highly specific for Windows Phone 7
platform. Implemented security needs to
have little impact on usability of the
application. Implemented security elements
must not affect performance, or functionality
of the application. The proposed architecture
meets these requirements and uses
authentication data that needs o be kept by
the user, to assure the desired level of
security.
Business Intelligence applications have to be
easy to use and offer their support for
decision making. Security is an element that
improves these applications to new
standards.

Acknowledgements
This work was co-financed from the
European Social Fund through Sectoral
Operational Programme Human Resources
Development 2007-2013, project number
POSDRU/107/1.5/S/77213 „Ph.D. for a
career in interdisciplinary economic research
at the European standards”.

References
[1] B. Ghilic, M. Stoica and M. Mircea,

“How to Succeed in Business Intelligence
Initiative: A Case Study for Acquisitions
in Romania Public Institutions,”in Proc.
WSEAS TRANSACTIONS on BUSINESS
and ECONOMICS, Issue 6, Vol. 5/2008,
pp. 298-309.

[2] S. Trif, “Using Genetic Algorithms in
Secured Business Intelligence Mobile
Applications,” Informatica Economica
Journal, vol. 15, no.1/2011, Bucharest,
pp.69-80.

[3] H. Dwivedi, C. Clark, D. Thiel, Mobile
Application Security, McGraw Hill
Professional Publisher, USA, 2010, pp.1-
15, 79-121.

[4] System.Security.Cryptography
namespace [Online] Available:

http://msdn.microsoft.com/en-
us/library/system.security.cryptography.as
px.

[5] C. Boja, et al.,“Secure architecture for M-
learning Bluetooth services,” Informatica
Economica Journal, vol.14 no. 3, 2010,
pp. 47-59.

[6] Discover Mighty Instance Management
Techniques for Developing WCF Apps
[Online] Available at:
http://msdn.microsoft.com/en-
us/magazine/cc163590.aspx.

[7] Professional ASP.NET Web Services:
Asynchronous Programming [Online]
Available:
http://www.stardeveloper.com/articles/dis
play.html?article=2001121901&page=1.

Informatica Economică vol. 15, no. 2/2011 129

Silvia TRIF graduated the Faculty of Cybernetics, Statistics and Economic
Informatics. She has a Master’s Degree in Project Management. She is a PhD
student of the Doctoral School of Bucharest Academy of Economic Studies
in the field of Economic Informatics. Her interests are mobile applications,
information security, web applications and project management.

Adrian VIŞOIU graduated the Bucharest Academy of Economic Studies,
the Faculty of Cybernetics, Statistics and Economic Informatics. He has a
master degree in Project Management. He has a PhD in the field of software
quality. He is a Software Engineer in telecom field and a collaborator of
Economic Informatics Department of the Bucharest Academy of Economic
Studies. He published articles alone or in collaboration and he is coauthor of
three books. His interests include: programming, genetic algorithms and

neural networks.

	silviatrif@gmail.com, adrian.visoiu@csie.ase.ro

