
Informatica Economică vol. 15, no. 2/2011 79

An Architectural Solution of Assistance e-Services for Diabetes Diet

Vasile AVRAM1, Diana AVRAM2
1Academy of Economic Studies, Bucharest, Romania

2SIGMA Publishing Co., Romania
vasileavram@ie.ase.ro, diana@avrams.ro

The aim of this paper is to outline the requirements and main architecture for a useful tool for
determining the nutrition facts of food for people having Type 2 Diabetes. This diabetes is
used only to establish the target audience, a “mass of people” having, maybe, to less in
common regarding the computer usage skills. The characteristics of the target audience (huge
number, diversity of habits and behaviors, computer usage skills) requires a solution based
on web services delivered at least partly as a standalone/ portable application, build from
Web services and provided with means for domain knowledge dissemination and usage.
Keywords: Software Architecture, Knowledge Management, SIK, Business Rules, Type 2
Diabetes

The Problem Space
The problem here starts from the fact the

diabetes once diagnosed is for life. It occurs
either because of lack of insulin, called Type
1 Diabetes or insulin dependent, or because
of presence of factors that oppose the action
of insulin (this is due either to diminished
insulin secretion or in increased hepatic
glucose output) and called Type 2 Diabetes.
Type 2 Diabetes results from the body’s
ineffective use of insulin and is very common
in most developed and developing countries.
According to Watkins [14] the evolution of
number of people aged more than 20 years
estimated to have Type 2 Diabetes is:
- In developed countries: 1995-48 Millions,

2000-52 Millions, and expected in 2025-
70 Millions;

- In developing countries: 1995-85
Millions, 2000-100 Millions, and expected
in 2025-230 Millions.

According to World Health Organization
(WHO) more than 220 million people have
diabetes [15]. The common consequences of
diabetes represented by that it increases the
risk of heart disease and stroke, foot ulcer,
retinopathy with direct impact on blindness,
kidney failure, damage to nerves etc.
According to WHO [15] diabetes and its
complications have a significant economic
impact to individuals, families, health
systems and countries. WHO [15] estimated
that China, for example, will lose about $558

billion in foregone national income between
2006 and 2015.
Prevention of Type 2 Diabetes can be easily
realized by changing the lifestyle by weight
reduction, improved diet (less fat, less
saturated fat, carbohydrates control, and
more dietary fiber) and increased physical
activity [14].
The aim of this paper is to outline the
requirements and main architecture for a
useful tool for determining the nutrition facts
of food for people having Type 2 Diabetes.
The solution is intended to have enough
generality to cover most problems related to
diet and content of foods in different
nutrients.
This Type 2 Diabetes is used here only for
the scope to establish the target audience of
an information system helping those people
in preventing and/or reducing the effects by
an adequate alimentary diet and for assisting
them in determining the proportion of
different nutrition facts in their food and
combination of foods.
The general scope of the information system
is:
- To supply to his users access to technical

domain specific knowledge (conversions
between different scales of measurement,
equivalences, etc);

- To supply food preparation recipes
specific to some diet;

1

80 Informatica Economică vol. 15, no. 2/2011

- To be a universal repository of the domain
knowledge by collecting existing and new
defined recipes/ cooking or preparation
procedures;

- To assist users in determining the
characteristic indicators (nutrition facts)
when cooking food, in establishing a
specific diet etc;

- To ensure the users privacy;
- To ensure the property rights of the

authors of recipes/ procedures.
According with this scope the target audience
is characterized by:
- Is globally located does no matter the

economical development stage of the
country they belong to;

- It includes people having different cultural
behaviors, habits, and even ages (under
last facts, from children’s to adults);

- It includes people from diverse social
strata, with different levels of education
and various skills and knowledge in using
computers (on a “dumb” to “expert” scale,
we can say);

- It not excludes the adherence to the target
audience of business users wanting to use
the knowledge managed here to operate
their business or parts of that.

All these characteristics of the target
audience will have a strong impact to the
informatics solution at least from the point of
view of human computer interface,
personalization and deployment,
maintenance and operation, as outlined in
what follows.
The services required by the target audience
represented at least by the following:
- Documenting in this domain;
- Searching for recipes specific to a diet;
- Determining nutrition facts of the food

they cook;
- Defining new recipes and/or cooking

procedures etc.

2 Software Architecture
We consider here the following common
definitions, from the indicated sources, for
software architecture:
- ‘Architecture is defined by the

recommended practice as the fundamental

organization of a system, embodied in its
components, their relationships to each
other and the environment, and the
principles governing its design and
evolution’ [2];

- ‘Software architecture presents a view of a
software system as components and
connectors. Components encapsulate
some coherent set of functionality.
Connectors realize the runtime interaction
between components’ [1];

- ‘The software architecture of a program or
computing system is the structure or
structures of the system, which comprise
software elements, the externally visible
properties of those elements, and the
relationships among them’[7].

By analyzing these definitions we can argue
that the software architecture defines
structure of an application as a set of inter-
related components that meet specific
requirements and constraints.
A key structural element in the software
architecture is represented by the
minimization of dependences between
components to obtain a loose coupling
architecture and by eliminating the
intermediary components and their required
dependences, ensuring in that way the agility,
the adaptability of the solution to a large
scale requirements and changes.
This can be realized using a service-oriented
approach in system design, realization, and
implementation. The main goal of service-
oriented approach is to change the user
centric web into a service (application) web
centric, it means to make web applications
cooperate and understand one another. We
consider here that ‘a service is a self-
contained software element that provides
well-defined business functionality and an
interface that is abstracted out and separate
from the implementation of functionality
[14].
A service-oriented architecture is a software
structure, for building applications that
implements business processes or services,
using a set of black-box type software
components loosely coupled and orchestrated
so that they deliver a well defined level of

Informatica Economică vol. 15, no. 2/2011 81

services [13]. In that way the design of the
application follows the trend in application
design by the fact it replaces the rigid
structures (and rigid architecture) with a
flexible architecture allowing application
integration.
By organizing the software system around
the central concept of business process and
the business process drives the behavior of
the components in the system we obtain a
process-centric architecture as defined in
[14].
In the context of this paper the business
processes are executable in computer as
code. Since the software here is all about the
system concerned we can argue that the
system is a software intensive system it
means “a system where software contributes

essential influences to design, construction,
deployment, and evolution of the system as a
whole” [2].

3 Web Services and Application
Architecture
A Web service forms a distributed
environment of objects, called services, in
which each such object performs a specific
task or a set of tasks and can be accessed
remotely via standard interfaces. The
architecture of Web services is based on
principles and standards for connection,
communication, description, and discovery.
Web service uses a three-tiered model
(Figure 1), defining three actors: service
provider, service consumer, and service
broker. The main role of these actors is:

- Service provider: creates, defines and
deploy the Web Service. By deploying the
Web service it advertise the service to
potential users, humans or agents. A
service provider creates a Web service
(the implementation of) and its service
definition and then publishes (1) the
service in a service registry (or directory)
based on the standard Universal
Description, Discovery, and Integration
(UDDI) specification. The description of
the service must be readable for both,
humans and machines, as potential users.
The service repositories have the role to
collect and organize location and
description information and make it

available to any clients that need it. The
service repository provides the
mechanisms to facilitate the publishing of
the services by service providers and to
enable service clients to locate the service
and the associated binding information.
The Web service publishing is the
operation to record or advertize into the
registry and acts as a contract between
Service repository and Service provider;

- Service broker: maintain the service
repository of published services and
searches for services that best meet the
user requirements and deliver this
information to the user. Here the role of
Service repository is simple: it must signal

Fig. 1. Web services model

82 Informatica Economică vol. 15, no. 2/2011

the match between the user request
(Service requestor) and Service provider
(supplier) description. Once found a
match is established a direct relationship
between the Service requestor and Service
provider;

- Service consumer (requestor): is a client
(a human or a software agent) that intent
to use a service for a specific goal and that
addresses a request for that. Once a Web
service is published, a service requestor
may find(2) the service via the UDDI
interface. The UDDI registry provides the
service requester with a WSDL (Web
Services Description Language) service
description and a URI (Uniform Resource
Identifier) pointing to the service itself.
The service requestor may then use this
information to directly bind (3) to the
service and invoke it. Bind creates a
client-server link between Service
requestor and Service provider.

For both service consumer and service broker
the Web serviceis available as an interface
that describes a collection of operations that
are network-accessible through standardized
XML messaging. If a service provider goes
down, the broker can always direct
consumers to another one. There are many
brokers so consumers can always find an
available one.

3.1 The target audience
Broadly, the target audience, the users, can
be categorized in two categories:
- Business users, such as restaurants for

example, searching for a specific dietary
recipe or wanting to determine the
nutrition facts for a food they cook, that
uses the services as defined by standards
on a subscription base. This category
include in fact all users wanting access to
the protected information, the recipes,
working procedures, and generally
knowledge and information subject to
copyright law and for which the owners
want earning revenues;

- Individuals users, the “mass of people”
formed by individuals that requires the
services without any charge, for free.

In what fallows we focus more on that last
user category, individual users. In the case of
individuals users, having a “mass of people”
as target audience the application
functionality, even defined as a collection of
Web services, must be accessible from a
general Web browser in an Internet “natural
way”, as human meaningful and accessible as
possible. It implies also to make the data
storages and knowledge repository an
integral part of the rest of functionality of the
system.
The environment is heterogeneous, disparate
and multiple. The system must effectively
adapt its behavior according to changes in the
business process that generally triggered by
changes in business requirements. This
requirement creates the premises for new
design approaches of Web services and their
functionality: the possibility to define even
the human-computer interface (HCI) in terms
of Web services using other Web services.

3.2 The application architecture
Because the application is interactive this
must ensure for a fast and consistent response
to interaction. When a remote service is
invoked, the speed at which the response is
generated is determined not just by the load
and performance of the server and the
network but also delays in all the software
components involved – the client and server
operating systems’ communication and
middleware services (remote invocation
support, for example) as well as the code of
the process that implements the service. Thus
another requirement generated by
performance reasons such as throughput,
response time, and deadlines is to transfer in
same way almost processing and storage to
the client computers (workstations) for all
individual users. This is imperatively
required at least by the fact the services
intend be free of charge for the individuals
users category.
The question here is in fact a request to
change the approach and delivery of web
services for that category. If a service can be
replaced with another having the same
functionality (the way realized and

Informatica Economică vol. 15, no. 2/2011 83

implemented differs maybe), selected and
offered by a broker, a human-computer
interface service should be kept as such until
the user quit it, in a similar way the user keep
a traditional application.
Note that the solution just outlined is only for
the individual users category and do not
apply to business users for which the delivery
of services is realized naturally as specified
by the standards governing the domain of
Web services. The services available for the
business user category, the paid ones, are
available via a multitude of brokers and
implementations.
The user interface, based on dialog windows
and/or printed reports, should take in account
elements such as size, scrolling, navigation,
partitioning, information hiding, highlighting
and printing.
This must be build with respect for general
requirements for designing the user interface
of application programs such as:
- The user must be aware always about

what must be done in the next step;
- The consistent structuring of the screens

(messages, instructions, commands or
information should appear in the same
general shape or format);

- The usage of default values for the input
fields (determined as a majority average
for usage of the cases by the target
audience);

- The user must be able to choose between a
menu-driven, as the oldest and most
commonly employed strategy, and an
instruction-driven interface, with a dialog
based on an instructional set (a command
language interface) using a natural
language like syntax.

The user interface must act as an initiator of
the functional services composition (build).
The data stored must be accurate to the
business process and the changes in the
system must be realized with a minimal
effort. The concrete web technologies used

and technical solutions should facilitate the
installation and deployment, without or
extremely minimal effort from the part of
user, and must be platform independent.
When keeping and exploiting both data and
computation in a “centralized” like manner
(even both replicated and shared) the
balancing of computational loads is difficult
be maintained at a satisfactory and efficient
state. The solution do not exclude the
existence of a “traffic-like police officer”, a
server dedicated to control the free of charge
access flow to services, that must be
accomplished in a satisfactory manner, from
paid access flow to services that must be
satisfied with respect of some high quality
criteria.
Figure 2 introduces the application
architecture as for the client workstation and
for the server.

3.2.1 Client side components
The components at client side (user
workstation) are briefly described in the
following paragraphs.
Data & Knowledge Collection. Comprise a
number of loosely coupled processes that:
 - Explicitly collect user preferences and
requirement;
 - Transparently track the user relevant
activities and store them, depending on the
case, in the Data Store or in the Knowledge
Repository. In this information system the
users makes up the vast majority of the
information workers. Since they concerned
with the functionality the system provides,
with the system’s ease of learning, and ease
of use their interactions and habits with the
system will be monitored and collected as
status information used for future analysis
and system changes so that this in turn be
able to adapt even to particular situations and
not only to common uses. The captured
events relates to user preferences, consulted
recipes, and new defined recipes.

84 Informatica Economică vol. 15, no. 2/2011

Data Store. This component comprises a
relational database used to store nutrition
facts about basic products, used to prepare
the foods. It contains also large objects such
as products images, product categories and
subcategories images allowing define a real
nutritional catalog of products. It comprises
also a set of tables, only in the locally
database structure, to store and maintain the
user preferences. The server side collects all
products and nutrition facts added by users.
They require a human validation before be
included permanently into the server Data
Store and made available for all users. The
validation refers to check the correctness of
nutrition facts only for the base products
since for recipes this is automatically
determined from the constituents. At server
side, a set of tables, are used to collect
statistics about user preferences. The main
structure of the data store includes the tables
and relationships used to maintain nutrition
facts as illustrated in Figure 3. This structure
is an excerpt from the Diet database structure
used for both Microsoft SQL Server and My
SQL implementations.
What is characteristic to this structure is that
the Products table maintains information
about the four main products nutrition facts

energy value, proteins, lipids, and
carbohydrates necessary for survive, given as
content per 100 grams from product.
Generally these nutrition facts provided as
information for consumer as a label on the
packing of food. The products can have also
other nutrition facts needed for health in
different dietary regimes such as fiber
content, (un)saturated fat, gluten etc. All this
extra nutrition facts a product may have are
signaled by a flag like attribute, the attribute
“extraattribute” of the Products table, and
collected in a separate table called
“Extraattributes” where is specified his
percentage content. The main structure
maintains the information required for a
nutritional catalog of products. Products can
be identified by the “EAN 13” international
code used for products. These data will be
used in the process of creating new recipes
definitions to be stored as knowledge in the
knowledge repository.
A design alternative for that component is to
be realized as an XML representation of the
relational database as described in Bos [10]
and the XML query language XQuery for
data manipulation or by exploiting the XML
DOM model and using scripting languages.

Fig. 2. The application architecture

Informatica Economică vol. 15, no. 2/2011 85

The XML DTD (Document Template
Definition) equivalent to this schema can be
found at http://www.avrams.ro/diet.dtd
together with a database file structured
accordingly with
http://www.avrams.ro/dietdb-02.xmland an
example of manipulation of the stored data
by intermediate of scripting languages
http://www.avrams.ro/showproducts.html.
Figure 4 shows some excerpts from these
files with the scope to illustrate this portable
and integrative solution. Every time an XML

document referencing XML DTD documents
this is checked for compliance with the
definitions given in the document template.
When using the XML DOM, to access the
records, the database is loaded/ parsed as a
tree whose elements can be processed by
DOM functions and commands. The right
side of the figure contains an excerpt from an
HTML page that displays, by intermediate of
a JavaScript, the products from catalog as
illustrated in the rightmost down box.

Fig. 3.The tables and relationships used to maintain nutrition facts (Diet database, partly)

Fig. 4. The model used to query an XML database by using XML DOM

86 Informatica Economică vol. 15, no. 2/2011

Knowledge Repository. It contains recipes
definitions, knowledge about diabetes,
nutrition facts, conversion procedures and
formulas, equivalences between different
measurement systems etc., or in other words
the business rules of the domain. The
knowledge repository is interfaced with end
user services for creating new recipes
definitions and user services to consult the
knowledge. The creation of new recipes takes
place by consulting the Data Store and then
building the associated RDF (Resource
Description Framework) definition to be
stored as new knowledge. Once created a
new recipe this one do not requires, when
consulted, to access in turn the constituents
in the Data Store. The Data Store will be

consulted only in maintenance operations
and/or to check for consistency of
definitions. It contains also all domain
knowledge incorporated in the Web services
that contributes to the diet application
functionality as a cumulative SIK (Figure 5)
as defined in Avram [3] [4], and used for
extensive knowledge management. SIK is
used for systematically acquire, structure,
store and maintain knowledge, formalized as
business rules for all domain business rules
that are incorporated in the software product
(web services or the application build on
their basis) itself together with the specific
knowledge of the domain [5]. It can include
also knowledge about the operation of the
current application.

The formalization of the business rules is
realized through RDF/XML (Resource
Description Framework/Extended Mark-up
Language) serialized triples. A triple is
defined by <subject, predicate,
object>(Figure 5) as specified by RDF
standard which was defined with the scope to
represent and manipulate knowledge in web

space. RDF usage is based on the
specifications of the standard defined by the
RDF Working Group of World Wide Web
Consortium (W3C), the non-governmental
organization, that defines and owners the
Internet standards. The standard includes also
the guidelines for Web architecture as
defined by the creator of Internet Tim

Fig. 5. SIK architectural component interaction with semantic web application [3]

Informatica Economică vol. 15, no. 2/2011 87

Berners-Lee [8]. RDF is based on XML and
in that way inherits all characteristics of that
and adds his own characteristics. The SIK
does not restrict the stored knowledge at the
domain business rules. Being an RDF
document, which in turn is based on XML,
the SIK component has all the characteristics
of both RDF and XML. SIK allows defining
and keeping in the same document (file) a
variety of rules grouped in separate spaces by
intermediate of namespaces. It allows also to
mix together protected rules (encrypted rules)
and unprotected rules (unencrypted rules).
The spaces also allow storing business rules
regarding the application programming
interface (used to connect applications over
cyberspace) or the rules applied to operate
the application in current use. SIK is a
concept that identifies only a specialized
RDF document: a document that collects
mainly the domain knowledge incorporated
in software products and user interaction
knowledge, or in other words the business
rules of a domain incorporated in software
products. But SIK do not restrict to only
these categories. It can collect any domain
knowledge included or not in a software
product. For business rules definitions and
computation can be used the RuleML as
described in [9] or we can use the Polish or
Reverse Polish notation. In our case all
business rules are very simple:
- The major part represented by recipes

containing the preparation procedure and
which is ease described in native RDF;

- Some simple formulas to compute the
correspondence between different
measurement scales or to realize
equivalences and that are ease described
by using the Polish/ Reverse Polish
notation and that are also ease described
in native RDF.

The services offered to consult the
knowledge will allow the user to browse and
see the content to which it is granted the
access in a user friendly format. We can
argue that both Data Store and Knowledge
Repository act as a local database,
respectively a local repository. They are parts
of a large distributed database and distributed

knowledge repository, respectively. They can
be accessed, if they are online and their
owner agree that, to determine if they need
updates, if they contains news, if necessary to
collect status information about user
interaction, personalization, and experience
in a similar way the distributed databases are
queried and updated.
Data Analysis. A GUI based tool to access
the Data Store and to realize a set of basic
operations on the local data such as creating,
updating, deleting or reporting. The tool
allows also access to collected status
information to ensure a full transparency to
the process, access to the current value for
setting parameters and options, etc.
Knowledge Extraction/ Inference. A GUI
based tool to access the knowledge in the
Knowledge Repositories for a “semantic
search, and maybe, to infer new knowledge”.
This is very useful when the user has a lot of
products available, in predefined quantities
and want find out which recipes can be
applied. This tool includes also processes to
transparently track the user relevant activities
and store them in the Data Store or in the
Knowledge Repository. The component must
be based on semantic web architecture,
similar to the one described in Figure 5, right
panel.

3.2.2 Server side components
The components at server side are briefly
described in the following paragraphs.
Data Store. The server side collects all
products and nutrition facts added by users.
They require a human validation before be
included permanently into the server Data
Store and made available for all users. The
validation refers to check the correctness of
nutrition facts only for the base products
since for recipes this is automatically
determined from the constituents, generally
stored here. At server side, a set of tables, are
used to collect centrally statistics about user
preferences. The behavior to the server side
Data Store is similar with the one of a global
schema for a distributed database with except
that stores data as a centralized database. The
global schema behavior allows query all

88 Informatica Economică vol. 15, no. 2/2011

active local databases to determine if they
require update or contains news to be added
to the server side. All these operations take
place only for the “white pages” like
information and data, it means for the
information and data that are not subject to
copyright law and that cannot be delivered
for free. Data Store is interfaced with system
administrator to allow maintenance
operations, validation and acceptance of
facts, data analysis of collected status
information, access restrictions to sensitive
data etc. The final intention for the solution is
to realize the database as XML documents
and ensuring in that way the highest
portability and availability for integration. In
that way both data and knowledge will be
stored, managed, and exploited using XML
or constructs derived from XML, as RDF is.
Knowledge Repository. It contains all recipes
definitions, knowledge about diabetes,
nutrition facts, conversion procedures and
formulas, equivalences between different
measurement systems etc., or in other words
the business rules of the domain subject or
not of the copyright law. As for client side,
the knowledge repository is interfaced with
system administrator for creating new recipes
definitions, for validating collected recipes,
for protecting or freeing knowledge, or in
other words all maintenance operation
required by the knowledge. The creation of
new recipes takes place by consulting the
Data Store and then building the associated
RDF definition to be stored as new
knowledge. Once created a new recipe this
one do not requires, when consulted, to
access in turn the constituents in the Data
Store. The server side Data Store will be
consulted only in maintenance operations
and/or to check for consistency of
definitions. The services offered to consult
the knowledge will allow the user to browse
and see the content in a user friendly format.
Knowledge Repository acts as a global or
central knowledge repository and contains
both unprotected (free of charge and
deliverable to anyone wanting that) and
protected knowledge (delivered only on a
subscription basis). It contains also all

domain knowledge incorporated in the Web
services that contributes to the diet
application functionality as a central
cumulative SIK as defined in Avram [3] [4],
and used for extensive knowledge
management.
Web Services Repositories. This component
contains the application web services that
will be delivered to the individual users for
free access together with all required tools to
build and deploy a portable application. For
that category of users, that invokes/ requests
the services via the application provided by
the server, the server acts as a Service
provider and Service broker. After the
individuals users defines for the first time the
preferences for the application and any time
they want change the application, these
services are invoked from the server side and
are “bind” in a portable application that in
turn will be delivered to the user for the
wanted platform. The Web services for
business users will follow all the standards
and rules for discovery and usage: they are
published to a Service repository, are
searched and found by a Service broker as an
answer for a user request, and finally are bind
to that user if they meet his requirements. In
this way, for business user category, the
server acts as a Service provider and
competes, maybe, with other services
provided by others for a contract.
User Management Services. This component
contains all required tables and services for
user management: creation and maintenance
of users and user rights. It contains also the
interface for user creation/ login allowing,
depending on the category:
- Individuals users: access to the steps 1 and

2 as defined in “The individual users
interaction” chapter in that paper;

- Business users: access to the same
services as individuals together with
specific services such as online payments,
invoices management etc.

It contains also the services for
authentication and for user access rights
checks ensuring the first level of protection
for data and knowledge.

Informatica Economică vol. 15, no. 2/2011 89

Security services. This comprises all services
required to protect the information subject to
subscription against unauthorized access.
They allow distinguish between protected
and unprotected information in all the steps
of user interaction with the server itself, Data
Store, Web Services Repository, Knowledge
Repository, and User Management Services.
The Security Services acts as a firewall
protecting all sensitive data or knowledge

from user actions and programs/ agents
actions. It allows also the proper delivery of
services.

3.3 The individual users’ interaction
The main steps of user interaction with the
proposed solution can be categorized as
Definition (1) and Utilization (2), as
illustrated in Figure 6.

The Definition main steps are:
 - Collect the User Requirements/
Preferences: in which the user requirements/
preferences are collected by following a
menu-driven interface. All these user
requirements/ preferences will be stored
locally in the user computer (workstation)
and, after the completion and acceptance by
user will be used to collect statistical
information that will be used to optimize the
product functionality and to establish a
default state for the user category/ region.
The information can be used later by user to
specify his changes and new requirements in
the same menu-driven interface where the
default values will be the ones previously
given to the system;
 - Collect and Adapt the Services: in which
on the basis of user requirement/ preferences
will be generated the requests for user
interface services that will be passed to
broker (s) to find them. The difference here

from the business Web services is that the
solution here is for a free of charge support
and in that situation do not expect be to many
offers for services. Thus the broker will be
provided, in the first deployment, by the
service provider server with the scope to
select and offer the best (version of the)
service that meets the processing needs of the
user;
 - Build a Personalized Solution for the User:
in this step is build a personalized solution
for the user interface, from adapted and
chosen services, in a similar way traditional
standalone applications are, that will be the
initiator for all other services invoked at
runtime by the user interactions with the
application. Here is not excluded the
generation of the entire application as a
standalone/ portable application version.
What is new here is that the services are
incorporated in the user interface so their
functionality remains unchanged until the

Fig. 6. The main steps of user interaction

90 Informatica Economică vol. 15, no. 2/2011

user decides to update them. This way
described here differs from the general
functionality of binding in which the binding
information is used to invoke the Web
service from the web service provider that
publishes the chosen web service. Generally
Web services implemented as objects and the
invocation is realized by calling a method of
the chosen object. In turn the method can
invoke other methods, available or not in the
public interface, of the same object or of
other objects if the Web service is build from
other Web services (using orchestration and
choreography, for example). By building a
“standalone” like solution all involved
objects must be included in that in a similar
way the external modules included in a
standalone application program at link-edit
stage;
 - Deploy the Solution to the User (local): the
personalized solution is deployed to the user
as a standalone/ portable user interface
application and as the data and knowledge
recipients (data store and knowledge
repositories). The portable application, in
Microsoft Windows environment, for
example, contains all needed pieces included,
such as library modules and do not requires
to install that libraries and declare them in
the registry. The portable solution is realized
by tools at server side. Combined with a
deployment of the Data Storage component
as XML files and knowledge repositories as a
SIK component, the process takes place more
like a file transfer from server computer to
client computer than an installation
procedure in the classic sense. In the same
way depending on the case, first time used or
current exploitation of the application, the
solution will be deployed as an initiator (first
time installation) or as an upgrade (current
usage). In that way we have the possibility to
solve in an ease to use way the deployment
even for “dummy” users may have. The user
solution must provide the mechanisms to
check and determine if necessary to
incorporate the new or updated services
available for a specific purpose. This must be
realized in accordance with the specification
of services requests, defined by the initial

specification and any other updates of that.
All these processes must be realized in an
automatic manner and the user will be
implied only to accept or reject the update,
described and motivated in non- or technical
terms depending on the way the user
specifies in the setup parameters.
The Definition main steps are triggered by
creating the user account and requesting the
application. After that, the remake of the
application can be expressly requested, by
accessing the user account or indirectly, by
accessing the application for current
operation by Accessing Diet (step 5). The
step five is the one in which the users access
the application in the local computer for
current operation. The update finder service
will determine if updates where available and
if yes and user wants that it goes to
Consulting Changes (Update) and then
initiate the step Collect and Adapt Service
and followings. If no update exists or
accepted the system goes and Display
Interface for User Access. The user can
operate and use now the application for his
processing, such as:
- It can consult the knowledge stored in

repositories in a similar way it consults a
product catalog;

- It can consult a cookbook like containing
the recipes;

- It can learn about the application
operation;

- It can define new recipes, maintain
Products catalog, or can print the available
reports;

- It can compute nutrition facts for a
specific recipe;

- It can determine the nutrition facts for
new defined recipes or for the existing
ones in which it changes the quantities or
replaces the constituents, etc.

In fact this is the most used step for almost
users: they cook the food and uses different
quantities of the constituents. The product
will cumulate from these quantities of
products and associated nutrition facts from
the product catalog and determine the values
for that. Later on these cumulative values
will be divided to the final quantity of

Informatica Economică vol. 15, no. 2/2011 91

prepared food and will be able to find the
composition in nutrients per serving or can
determine which is the quantity per serving
with respect for restrictions of some nutrients
quantity, for example carbohydrates less than
50 gr. The solution, offered here, do not
determine if the components, when applying
a recipe, will be transformed from one
nutrient in another one by different chemical
reactions that can be resulted as the cooking
procedure applied. This information must be
supplied by the cooking procedure in the
recipe and must be applied later as a
correction to the cumulative value of
nutrients to determine their approximate real
value.

4 Conclusions
The main change in the way the Web
services used refers here to the possibility to
build a freeze user interface from Web
services and to make from that an initiator
for all other web services the application may
invoke. It is not excluded the solution to
build an entire standalone/ portable
application able to offer to users the
possibility to access the basic functions of the
application in an offline way. The portable/
standalone solution is more efficient and
answer better to the requirements since his
deployment is more like a copy to a specific
storage than installation.
Another change is to realize a reduction of
required storage space and processing at
server side by deploying both data and
domain knowledge to user side with ensuring
the agility. The domain knowledge will be
deployed as a SIK repository so that software
will be able to infer new knowledge and
realize semantic searches as described in
reference [3]. Both data store and knowledge
repository will have local and global
behaviors similar to distributed databases.
This will allow to disseminate data and
knowledge and later on to enrich the content
with user creations like in Hegel’s dialectic.
Because the knowledge stored in SIK is
process-able, we can use inference engines to
infer new knowledge from it, that is, to find
new rules. It can be used also as a basic

source for semantic search. SIK is a concept
that identifies a specialized RDF document: a
document that collects mainly the domain
knowledge incorporated in software and user
interaction knowledge, or in other words the
business rules for a domain. It was defined to
signal a way to use the “tacit” like
knowledge incorporated in the software
products and to allow users of that software
to inherit that incorporated knowledge. But
SIK do not restrict to only these categories of
knowledge. It can collect any domain
knowledge included or not in a software
product. For business rules definitions and
computation can be used the RuleML [9] or
we can use the Polish or Reverse Polish
notation. One of the main benefits of
representing in this formal way the business
rules is represented by that these rules
become automatable: they can be processed
and acted by business rules engines, can be
searched by semantic search engines, and
inference engines can infer new knowledge
from the existing ones.
The application manages both, protected and
unprotected, data and knowledge. The
application must deserve two broad
categories of users: one having free access to
public data and services, it means to
unprotected information and knowledge, and
another one with paid services, having access
to both protected and unprotected data and
knowledge.
The solution, offered here, do not determine
if the components, when applying a recipe,
will be transformed from one nutrient in
another one. This information must be
supplied by the cooking procedure in the
recipe and must be applied later as a
correction to the cumulative value of
nutrients to determine their value. Despite
that the solution gives a closed
approximation to the nutrients and signals the
user their values. These are real flags
signaling what is safe for his health with
respect for a specific diet.
One major advantage is that the solution
offers information about cooking and food
without boundaries, habits or cultural
restrictions etc. It transforms that specific

92 Informatica Economică vol. 15, no. 2/2011

knowledge to a universal knowledge that can
be shared without boundaries, religion, or
social regime restrictions and constraints: it
can offer, for a specific diet, a plethora of
recipes from around the world. In the same
time it offers to the user the possibility to
adapt and transform them according to their
behavior and taste with keeping the
possibility to control the quantities in the
monitored nutrients of his final product. Of
course the only solution to know exactly a
food contains is to realize chemical analyzes.
But including that chemical analyzes will
produce approximate values if the cooking is
realized manually and not in an industrial
way controlled by machines, and where we
suppose that all steps will be followed
exactly and the temperature will not
overcome. I consider that is satisfactory for
the target audience that prepare their food in
a manually manner.
The database schema for the Data Store
component in the architecture includes a ‘non
academic” solution in that the Products table
contains columns corresponding to the basic
nutrition facts (even they are 0 for some
products) and allows extend these facts in an
additional table. These additional facts can be

exploited by stored procedures or access
routines provided by database administrator
with the scope be easy accessed by services.
This solution can be eliminated with an
“academic” one represented by an XML
database and ensuring in that way the highest
level of portability and integration that can be
ensured by the today technologies.
For all business users and other Service
requestors of a Web service from the ones
included here the web services will be
available according to the traditional way
described in [3].
As a final conclusion the solution realizes a
description of the main architectural
components. In different parts some details
included with the scope to certify to learner
that the solution is feasible and can be
realized an implemented in its integrality.
Even parts of the components described
earlier are realized this document is not the
description of an informatics system or
product. It can be considered as a strategic
specification for both, an informatics system
and of another way to use services and build
applications, using those services, as portable
applications.

References
[1] S. Albin, The Art of Software

Architecture: Design Methods and
Techniques, John Wiley & Sons,
Books24x7
<http://common.books24x7.com/book/
id_6020/book.asp>, 2003, pp 1-20.

[2] ANSI/IEEE Std 1471-2000, IEEE
Recommended Practice for Architectural
Description of Software-Intensive
Systems, 2000, pp 1-29.

[3] V. Avram, “The Acquisition and Sharing
of Domain Knowledge Contained in
Software with a Compliant SIK
Architecture”, Proceedings of the 11th
European Conference on Knowledge
Management, Universida de Lusíada de
Vila Nova de Famalicão, Famalicão,
Portugal, VOLS 1 AND 2, 2010, pp 19-
26.

[4] V. Avram, “Benefits of Using Software
with SIK Compliant Architecture in
Cloud”, 5th International Conference
Knowledge Management - Projects,
Systems and Technologies, Academy of
Economic Studies and the National
Defense University ‘Carol I’, ISBN: 978-
973-663-783-4, Bucharest, Romania,
2010, pp 75-78.

[5] V. Avram, D. Avram, “Transforming the
Knowledge Incorporated in e-Learning
Software into an Automatable Explicit
Knowledge for the Teacher and the
Learner”, Procedia - Social and
Behavioral Sciences, Volume 11,
Elsevier, 2011, pp 180-184.

[6] M.A. Babar and I. Gorton, “Architecture
Knowledge Management: Challenges,
Approaches, and Tools”, 29th
International Conference on Software

Informatica Economică vol. 15, no. 2/2011 93

Engineering (ICSE'07 Companion), 0-
7695-2892-9/07 IEEE Computer Society,
2007, pp 170-171.

[7] L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice,
Second Edition, Addison-Wesley
Professional, http://acmsel.
safaribooksonline.com/ 0321154959,
2003, pp 1-17.

[8] T. Berners-Lee, D. Connollyand R.
Swick. (1999, June 7).Web Architecture:
Describing and Exchanging Data, W3C
Note 7 June 1999. World Wide Web
Consortium (W3C). [Online] Retrieved
October 10, 2010, from
http://www.w3.org/1999/04/WebData,
1999.

[9] H. Boley, J. Mei, M. Sintekand G.
Wagner. (2005, April, 27-
28).RDF/RuleML Interoperability, W3C
Workshop on Rule Languages for
Interoperability [Online] Position Paper:
27-28 April 2005,
http://www.w3.org/2004/12/rules-
ws/paper/93/.

[10] B. Bos. (1997, July, 11). XML
representation of a relational database,

W3C - World Wide Web Consortium,
[Online]
http://www.w3.org/XML/RDB.html.

[11] I. Gorton, Essential Software
Architecture, Springer -Verlag Berlin
Heidelberg, 2006.

[12] G. Coulouris, J. Dollimore and T.
Kindberg, Distributed Systems Concepts
and Design, Third Edition, Addison-
Wesley, Pearson Educational, 2001, pp 1-
720.

[13] J. Hurwitz, R. Blooc and M. Kaufman,
Service Oriented Architecture for
Dummies, John Willey and Sons, 2007,
pp 1-408.

[14] P. Seshan,Proces-Centric Architecture
for Enterprise Software Systems, CRC
Press, Boca Raton London New York,
2010,pp 1-304.

[15] P. Watkins,ABC of Diabetes, Fifth
Edition, BMJ Books, 2003, pp 1-18.

[16] WHO – World Health Organization.
(2011, January). Media Centre-
>Factsheets, Fact sheet N°312January
2011, [Online] http://www.who.int/
mediacentre/factsheets/fs312/en/.

Vasile AVRAM PhD has graduated the faculty of Economic Computation
and Economic Cybernetics in 1976. Now is professor of Internet
Technologies for Business and Informatics for Business Administration at
Faculty of Business Administration from the Academy of Economic Studies
in Bucharest, Romania. His research interests mainly include Internet
Technologies, Database Management Systems, and Knowledge
Management. Is member of the professional associations IEEE, ACM,

INFOREC, and IACSIT.

Diana AVRAM has graduated the Faculty of Mathematics to the University
of Bucharest in 1995. Actually is web-designer and webmasterat SIGMA
PublishingCo., Romania. The research interests mainly include Internet
Technologies, Database Management Systems, and Knowledge
Management.

	An Architectural Solution of Assistance e-Services for Diabetes Diet

