
Informatica Economică vol. 14, no. 4/2010 19

Estimation of the Reliability of Distributed Applications

Marian CRISTESCU1, Laurenţiu CIOVICĂ2
1Lucian Blaga University of Sibiu, Romania

2Academy of Economic Studies, Bucharest, Romania
mp_cristescu@yahoo.com, ciovica_laurentiu@yahoo.com

In this paper the reliability is presented as an important feature for use in mission-critical
distributed applications. Certain aspects of distributed systems make the requested level of
reliability more difficult. An obvious benefit of distributed systems is that they serve the global
business and social environment in which we live and work. Another benefit is that they can
improve the quality of services, in terms of reliability, availability and performance, for the
complex systems. The paper presents results of a study conducted by the students of Economic
Informatics at the University "Lucian Blaga" Sibiu, over four months. The studied population
was represented by several distributed applications made under the object oriented
programming techniques. This study aimed to estimate the reliability of these applications
using object-oriented design metrics validation techniques.
Keywords: Distributed Applications, Software Reliability, Software Metrics, Fault, Tolerance

Introduction
Communications software services and

distributed applications for the next
generation must be reliable, efficient, flexible
and extensible. For example, applications
such as real time communication between
personal computers, and flight surveillance
systems must be highly available and
scalable to meet the required level of
reliability and performance requirements. In
addition, these applications must be flexible
and expandable to meet their inherent
complexity and quickly respond to
application requirements changes.
Distributed systems are the foundation of the
next-generation communications systems,
including electronic commerce, satellite
surveillance systems, distribution and
medical imaging, real time data processing
systems, flights surveillance.
A reliable distributed application is defined
in [3] as "a system whose behavior is
predictable, in spite of partial failures,
asynchrony, and reconfiguration." For
example, partial failures are an inherent
problem in distributed systems. The average
of good working time, for the distributed
system components, decreases rapidly as the
number of compute nodes and
communication links increases.
Distributed systems consist of processes

running in parallel on heterogeneous
platforms, and therefore are prone to
conditions of "stress", communication errors,
failures in communication nodes, and
bottlenecks. Thus, distributed systems are
often more difficult to develop, manage, and
maintained at an appropriate level of
performance than centralized systems.

2 Reliability - Major Software Quality
Features
The reliability modern approach aims at
defining techniques and methods which
interacts throughout all the specific
development cycle processes ensuring that
each stage of software production have a
high level of reliability. It is an active mode
of increasing the software reliability during
the design, coding, respectively during other
stages of the development cycle. No changes
are expected to be made on a finished
product, but occur during the process in order
to use such resources that what is obtained is
reliable.
Further in the article will be referred to
economical applications, dedicated to
organizational structures oriented to
production and services called Enterprise
Applications – EA. Nowadays when Web
applications are affecting everything, from
customer experience to the relationship with

1

20 Informatica Economică vol. 14, no. 4/2010

vendors, the reliability of informatics
systems of organizations is increasing
becoming critical for companies, clients and
business partners. Because a failure of an
application will result in loss of business and
the significant costs of repair, and because
the Internet environment is always open for
business, companies require that the
reliability of Enterprise Applications, to be
assessed and analyzed continuously. The
emergence of the Internet has made from
information and directly, from accessing it
without the error, the most valuable asset for
a company.
Enterprise Applications is a collection of
hardware, operating system services,
software components, and very often human
processes, working together to ensure the
expected processing service. Reliability of
the entire application is highly dependent on
the reliability of each component. Because all
components in a system are closely related, a
failure of a component will affect the
reliability of others, and hence the whole
system.
Failures in the operation of distributed
applications occur due to many aspects of
which are mentioned:
 inadequate testing;
 issues of changing management;
 operations errors
 low quality code source;
 lack of a coherent process of quality

assurance;
 interactions with external services or

applications;
 different operating conditions - high levels

of utilization and overload;
 random events - security failures;
 hardware failure - hard drives, network

equipment, servers, power sources,
memory, CPU.

 Issues related to the operational
environment

Therefore, their reliability refers to how well
a distributed application assures the service
which has been defined in functional
specifications, accurately and without error.
In addition to how much an application runs
without errors, the software reliability refers
to how well it delivers accurate data and to
error detection and recovery in order to avoid
failures.
The reliability of a distributed application is
considered in [4] as "a measure of the ability
of an application to operate as long as
possible without recording any failures".
Depending on the type of application, it is
possible that long-term reliability may not be
a concern for those who develop them. For
the analysis, we take, for example, the flight
surveillance systems. The system availability
requirement is high – it must be available
when a landing request is received.
On the other hand, the reliability requirement
is quite low since the system does not remain
operational for a long period of time. The
system reliability is often measured as being
the mean time until an error appears (Mean
Time to Failure), and is expressed by:

MTTF = Working hours / Number of failures (1)

According to [6], an important approach to
software reliability is one that says: “an error
will occur only when the application is
available and running”. Consequences of
errors apparitions vary from: not providing
the service to providing an incorrect service
and to generate incorrect data and affect the
stability of the system. Meanwhile some
defects are just inconvenient, others vary
from interruptions caused by loss of time,
when the bought system is not too much
requested to respond to a new acquisition

request, until serious inconveniences like: a
stock system that has no resources to accept a
new authentication or a major disaster when
a ship's navigation system fails.

3 Reliability Analysis of Components and
a Whole System
If it is taken into account the debugging
process in a whole system, the development
method and evaluation of software reliability,
it is necessary to understand factors such as
programming techniques, the size of each

Informatica Economică vol. 14, no. 4/2010 21

component during the test, etc. However, it is
difficult for conventional methods of
reliability assessment to estimate the
established parameters for each component.
If it is taken into account the reliability of
each component on overall system reliability,
it is necessary to specify the size of each
component, how to report and correct errors
during the development of components and
the number of links between components,
etc.
Software reliability growth models have been
used as conventional methods for evaluating

software reliability management process and
quality control and testing process. Among
others, inhomogeneous Poisson processes
models (NHPP) are taken into account as
they can be easily applied in the development
of object-oriented software.
As mentioned above, by applying the
logarithmic Poisson model of execution time,
and relying on the assumption that during the
testing processing the number of defects
decreases, we obtain the following structure
represented by the average value function μ:

 (2)
Information on the actual number of defects
detected in the system is important for
estimating the progress of operational
procedures. Because it is a random variable,

in the previously mentioned model for the
estimation of its value, the following
expressions are used [7]:

 (3)

where:
E[S(t)] is the estimated number of detected
defects till moment t.

3.1 Correlation Error – Failure Operation
Establishing the meaning of this correlation
requires understanding the following terms:
 "failure in process" – a deviation

operation way of a system of programs
from the user requests – the failure can be
in a shape of a “fall” which forwards this
to the state in which the system does not
function anymore, or it can be a simple
dysfunction like, for instance, incorrect
display of a character to the screen;

 “the intensity of failure” – number of
failed runs of a system of programs, that
appear in a given time schedule – an
alternative way of expressing the
reliability of the software.

 “Error” – a fault in the system of

programs which leads to a “functional
failure”.

 "operational profile" - the set of functions
required for the implementation of a
software system - later they may be
"damaged" by entering data, they affect
the implementation - involving, at all
times, the probability of events
occurrence.

Of utmost importance to understand the
significance of the process for estimating
software reliability is, achieving the
distinction between "operational failure -
malfunction or failure" and "error". Any
situation where a program does not work in
such a way as to meet the user needs, is
regarded as an "operational failure" -
malfunction, while the "error" is the current
failure of the program code segment that
causes an "operational failure."
Very long time, software engineers have

22 Informatica Economică vol. 14, no. 4/2010

focused almost exclusively on counting the
number of errors occurring in a software
program or system, essentially reflecting the
meaning of research in this area.
During the system testing phase, the
researchers checked the operations executed
by a distributed application and compare
them with user requirements, performing
error correction. This phase is the stage of
code writing and testing small program units
- modules - that are "made" under the initial
"project" by the software engineers who aim
to satisfy user requirements determined by
the system analysts.
Software Reliability is affected by three
factors:
 the introduction of errors;
 eliminate errors;

 use of software systems.
Number of introduced errors depends
essentially on the "quantity" of code
developed - the number of instructions added
or modified through which programmers
creates new facilities or eliminate errors.
Errors are detected and removed as a
software system is running and operational
defects appear.
Software reliability models come closer to an
average characteristics than to a specific
behavior, because the random use of software
systems and introduction of defects generates
errors generates defects that have an
unsystematic-random feature.
The following table presents the relations
between the two concepts in different models
of reliability:

Table 1. The relationship between error and failure models for different operating

Source Model

ANSI / IEEE 729-1983 error ⇒ fault ⇒ failure

Fenton error ⇒ fault ⇒ failure

Shooman fault ⇒ error ⇒ failure

IEC 1508 fault ⇒ error ⇒ failure

Hatton error ⇒ fault or defect or bug ⇒ failure

Nagappan, Ball, and Zeller fault ⇒ failure

Schilling human error ⇒ fault ⇒ failure

A software error is a dynamic property and
represents an unexpected deviation of a
program system from the operational

characteristics. If a software component is
not running, then it cannot cause an error.

Fig. 1. Relation between errors and failures in functioning

Informatica Economică vol. 14, no. 4/2010 23

Operational failures arising from the
presence of one or more software errors are
activated by a particular set of input stimuli.
Any error can cause a failure in a system of
programs, but not all errors will result in
failures, as shown graphically in Figure 1.
This analysis suggests that detection and
removal of a large number of errors does not
necessarily lead to a higher level of
reliability. Instead, it is important to focus on
errors associated with a shorter MTTF
interval.

4 Estimation of Reliability for Distributed
Applications with the Help of Software
Design Validation Metrics
Developing distributed applications is an
activity that consumes time and resources.
Even if the degree of automation of software
development activities increased, resources
are an important limitation. Software metrics
are needed to identify the place where
resources are needed; they are an extremely
important source of information for decision
making.
Testing distributed applications is an
example of an activity that consumes time
and resources. Applying equally, tests and
verification effort to all system components,
has become a business point of view of the
prohibitive cost involved. It is therefore
necessary to identify modules that cause
problems such as testing and verification
effort to focus on these classes. Thus, metrics
availability, for product design, to
characterize fault-prone modules is vital.
The introduction of OO technology in the
software industry has created new challenges
for companies that use metrics as a tool for
monitoring, control and improvement in
software development or maintenance.
Therefore, metrics that reflect the specificity
of OO programming paradigm must be
defined and validated for use in the software
industry. Thus, it was concluded that the
"traditional" metrics for product are not
sufficient for characterization, evaluation and
prediction of quality object-oriented software
systems.

4.1 Description of the Study Case
To validate experimentally the proposed
object-oriented metrics [2], taking into
account their ability to make predictions
about the likelihood of defects, a study was
conducted during four months (from
September to December, 2009). Metrics
analyzed are:
 The importance (significance) of

methods from a class (WMC – Weighted
Methods per Class) - measures the
complexity of individual classes. If we
assume that all class methods are equally
complex, then WMC expresses the
number of methods defined in each
class. However, WMC is defined as "the
number of states and operators of all
functions defined in every classroom"
[2];

 Depth of Inheritance Tree of a class
(DIT - Depth of Inheritance Tree of a
class) – is defined as the maximum depth
of the inheritance tree of each class. C++
language allows multiple inheritances
and because of that classes can be
organized in acyclic directed graphs
instead of trees. In some cases is
considered that DIT measure “the
number of ancestors of a class”. The
hypotheses which stands at the
foundation of this matrix is the one who
starts from the presumption that object
oriented programs, well designed, are
structured as “forests of classes” instead
of an wide inheritance grid. In other
words, a class positioned deep in the
inheritance grid it presumes to be more
prone to error because the class inherited
a big number of definitions from the
predecessors.

 Number of children of a class (NOC -
Number of Children of a Class) - express
the number of direct descendents for
each class. The classes with a big
number of descendents are difficult to
modify and require, in general, much
more testing because of the fact that the
class is possible to affect all her
successors.

24 Informatica Economică vol. 14, no. 4/2010

 Coupling between object classes (CBO -
Coupling between Object classes) – A
class is attach to another class if she uses
her member function or/and instance
variables. CBO defines the number of
classes with witch is attach the specified
class. The hypothesis witch stand at the
foundation of this matrix is, in general,
as a class is coupled with many others
object classes, the class is more prone to
errors. So attaching between classes
should be determinate for focusing the
testing process and/or for changes made
upon those classes.

 Response from a class (RFC) determines
the number of methods which is possible
to be executed as a response to a
message received by an object of this
class es. RFC is, also, the number of
functions called, directly, by the member
functions or by the operators of a class.
The hypotheses which stand at the
foundations of this matrix specify this
fact: when the suite of responses of a
class increases, then increases the rank
of complexity of the class, this being
more prone to errors and by default is
more difficult to change.

 Lack of cohesion on methods (LCOM –
Lack of Cohesion on Methods) – specify
the numbers of pairs of member
functions who do not share instance
variables minus the number of pairs of
member functions that share instance
variables. Anyway the matrix is set to
Zero; in any situations in which the
decrease functions produce a negative
result. A class with low cohesion
between its methods suggests an
inappropriate design which is probably
due to many errors (e.g. encapsulation of
unrelated objects and functions of the
program states, which should not be
combined).

The studied population was represented by
several applications made by the students of
Economic Informatics section from the
University “Lucian Blaga” of Sibiu. Students
were not required to have prior experience or
training in the application or object oriented

methods. All students have “prior
experience” in the programming field in C or
C++ and the relational data bases and so they
have the necessary skills of doing this kind of
experiment. Students were grouped at
random, eight in each team, each team has
developed a system, medium size, for
information control which will allow
directing activities conducted in a rental
center videotapes and maintenance of
databases of customers and videotapes.
The development process was conducted in
accordance with the sequential lifecycle
model of software engineering, derived from
the cascade model. This model includes the
following phases: analysis, design,
implementation, testing and maintenance. At
the end of each of these phases has been
synthesized information’s and has been tried
compiling. At the end of each of these phases
has been synthesized and tried compiling
specific information of "document":
document analysis, document design, code
annexes containing reports on errors, and
finally annexes containing the source code
changes. Required specifications and design
documents have been validated for the
purposes of verifying that the match system
requirements. Errors discovered in these first
two phases have been communicated to
students. This was meant to be done to
increase the chances of implementation
starting with an analysis, a correct concept of
OO design.
The testing phase was conducted by an
independent group composed of developers
with more "experience" in software
development. This group tested all systems
through similar tests plans and functional test
techniques. During the debugging phase,
students were asked to correct their system
based on errors discovered by an independent
testing group.
Students' recommendations were made to use
the following libraries:
a) MotifApp - This library provides a set of
C++ classes for manipulating windows,
dialogs, menus, etc.., its mode of use is
described in [8]. MotifApp library offers the
use of small "tools" such OSF / MOTIF

Informatica Economică vol. 14, no. 4/2010 25

through a style object-oriented design and
programming.
b) GNU Library - This library comes from
C++ programming environment
[GNU].Contains functions for manipulating
strings, files, lists, etc..
c) Database library C++ - This library
provides a C++ implementation of multi-type
multi-indexed B-trees.
A minimal training was provided to students
on how to use these libraries. Thus, a tutorial
type "guide" was offered of how to
implement OSF / Motif applications. In
addition, a programmer familiar with C++
OSF / Motif applications has been available
to them to answer all the questions on the use
of mini-systems OSF / Motif and libraries.

4.2 Results Analysis
Below are the results obtained in estimating

whether the OO design metrics defined in [2]
estimates are useful for error-prone
classes. This is intended to be used to assess
these metrics as indicators of quality and to
determine how common metrics to compare
the code. Attempts to provide empirical
validation, a fact which is considered to be
necessary before any attempt to use such
metrics as indicators of quality primary
objective
Table 2 provides descriptive statistics of the
distributions of common matrix. These
results indicate that inheritance hierarchies
are somewhat uniform (DIT), and classes
have, in general, few survivors (NOC). In
addition, most classes show a lack of
cohesion (LCOM) close to 0. This last matrix
is not too good differentiates the classes
which may impede its way down and not
allow any negative position.

Table 2. Descriptive statistics of OO metrics analyzed

 WMC DIT RFC NOC LCOM CBO
Maximum 99.00 9.00 105.00 13.00 426.00 30.00
Minimum 1.00 0.00 0.00 0.00 0.00 0.00
Median 9.50 0.00 19.50 0.00 0.00 5.00
Average 13.40 1.32 33.91 0.23 9.70 6.80
Standard Deviation 14.90 1.99 33.37 1.54 63.77 7.56

Descriptive statistics are useful in
interpreting the results of the analysis; in
addition, they will facilitate actions to
compare future results with similar studies.

4.3 Analysis Methodology
The response variable which is used to
evaluate OO design metrics is binary. For
example, if a class was detected causing
problems during the test phase is
recommended to use logistic regression to
analyze the relationship between metrics and
fault-prone classes. Logistic regression is a
classification technique used in many
scientific experiments based on maximum
likelihood estimates. In particular, univariate

logistic regression was used to assess the
relationship of each metric in isolation and
prone to errors. Then, multivariate logistic
regression was used to evaluate the
predictive ability of those metrics that have
been assumed to be sufficiently significant in
univariate analysis (e.g., p <0.25 is
considered to be sufficiently heuristic) [5].
Tables 3 and 4 contain the obtained results,
univariate and multivariate regression that in
all classes examined. These results are
reported in the metrics that have proven to be
the most significant development in all
projects.

26 Informatica Economică vol. 14, no. 4/2010

Table 3. Univariate analysis - summary results
Metric Coefficient  P 2R Classes

WMC(1)
WMC(2)
WMC(3)
WMC(4)

-0.022
-0.086
-0.027
-0.0944

98 %
92 %

103 %
91 %

0.0607
0.00035
0.0656
0.0019

0.007
0.024
0.0154
0.0467

All
Mew Classes
DB
UI

DIT(1)
DIT(2)
DIT(3)
DIT(4)

-0.485
-0.868
-0.475
-0.29

62 %
42 %
62 %
75 %

0.0000
0.0000
0.043
0.024

0.0648
0.1314
0.0187
0.017

All
Mew Classes
DB
UI

RFC(1)
RFC(2)
RFC(3)
RFC(4)

-0.085
-0.087
-0.077
-0.108

92 %
92 %
93 %
90 %

0.0000
0.0000
0.0000
0.0000

0.0648
0.2477
0.188
0.3624

All
Mew Classes
DB
UI

NOC(1)
NOC(2)
NOC(3)

3.3848
3.62
2.05

3000 %
3734 %
777 %

0.0000
0.0011
0.0000

0.1426
0.362
0.0826

All
Mew Classes
DB

CBO(1)
CBO(2)
CBO(3)
CBO(4)

-0.142
-0.079
-0.086
-0.284

87 %
92 %
92 %
75 %

0.0000
0.017
0.006
0.0000

0.068
0.02
0.034
0.17

All
Mew Classes
DB
UI

Table 4. Multivariate analysis of OO design metrics
 Coefficient P
Interruption 3.13 0.0000
DIT
RFC
NOC
RFC
CBO

-0.50
-0.11
-2.01
-0.13

-0.238

0.0004
0.0000
0.0178
0.0072
0.0001

Source -1.84 0.0000

For each metric, the following statistics are
available:
 Coefficients (presented in Tables 3 and 4)

express the estimated regression
coefficients. When the absolute value of
the coefficient is higher, the impact of
explanatory variables on the probability p
of detecting errors in a class, is higher;

  - (appears only in Table 3) - is based
on the notion of odd rate [5] and provides
an assessment of the impact of variable

metric response. Odd rate (X) is the
ratio between the probability of an error
and the probability of not having an error
when X is the metric value. For example,
if for a given value X, (X) is 2, then is
twice more probably that a class to
contain errors than that class not to
contain errors. The value of (X) is
calculated as the average of the following
formula:

 
 X

X


 1

 (4)

So (X) expresses the reduction / increase of
the odd rate (expressed as a percentage in

Table 3) when the value of X is increased by
one unit. This is intended to provide an

Informatica Economică vol. 14, no. 4/2010 27

intuitive picture of the impact the
explanatory variables have.
 Statistical significance p (appearing in

Tables 3 and 4) provides a more detailed
picture of the accuracy of the estimate
coefficients. Provides information about
the probability that the ratio is different
from 0, by accident. From a historical
point of view of the significance threshold
of p = 0.05 (5% probability) has often
been used to determine whether an
explanatory variable was a significant
predictor. However, choosing a particular
level of significance is ultimately a
subjective decision and other levels as p =
0.01 or p = 0.1 are normal values. Also, as
the significance level is higher, the higher
the standard deviation of estimated
coefficients is growing and the credibility
of the calculated impact of calculated
variables is decreasing. Significance test is
based on a likelihood ratio test [5], used
routinely in logistic regression.

4.4 Univariate Analysis
It is a method of analysis of OO design
metrics, on the probability of detecting errors
in a class during testing phases. If this
analysis is equivalent to the logistic model,
with the probability that a single error is
detected in a classroom.
 Importance (significance) methods of a

class (WMC) was presented (see Tables 3
and 4) as somewhat significant (p =
0.06). For new and modified classes
extensively, and UI classes (graphical and
textual user interface), the results are
much better: p = 0.0003 and p = 0.0001
respectively. As expected, the WMC is
higher as the greater likelihood of
detecting errors. These results can be
explained by the following fact: the
internal complexity has no impact if the
class is reused with minor
modifications. In this case, the properties
interface class will have a significant
impact;

 Depth of inheritance tree of a class (DIT)
- as shown in Tables 3 and 4 is shown to
be highly significant (p = 0.0000). As

expected, as the DIT is higher, the
probability of error detection
increases. The results are improved again
(logistics increases from 0.06 to 0.13)
when only the new and modified
extensively classes are taken into account;

 The response from a class (RFC) was
shown, based on data from Tables 3 and 4
that is highly significant (p = 0.0000). The
RFC is greater, the greater the likelihood
of detecting an error. However, logistic
parameter R2 has been significantly
adjusted for the classes in November, for
the extensively modified classes and user
interface – UI (from 0.06 to 0.24
respectively 0.36). The UI classes’ shows
a distribution that differs significantly
from that of DB classes: average and
median are significantly higher. As a
result, it can strengthen the impact that
RFC has when the analysis was made;

 The number of successors of a class
(NOC) seems to be very significant
(except for UI classes) but the trend
(based on data in Tables 3 and 4) is
contrary to what is expected. The NOC is
higher, the probability of detection error
decreases. This surprising trend may be
explained by the fact that most classes
have more than one heir, and that actual
reuse of classes is somehow associated
with a higher value for NOC. As it was
shown that reuse is an important
influencing factor of density errors [1],
this explains why the classes that have
higher values for NOC are less prone to
errors. However, there is some instability
among subsets of classes about the impact
of NOC metrics on the probability of
detecting errors in a class (see  Table
3).

 Lack of cohesion of methods (LCOM) -
the observations made proved to be
meaningless for all cases (which is why
the results aren’t presented in Table 3),
which was expected given that the
distribution indicates LOCM lack of
variety and few major things;

 Coupling between object classes (CBO) -
is significant and an additional feature for

28 Informatica Economică vol. 14, no. 4/2010

UI classes (p = 0.0000 and = 0.17). There
is no satisfactory explanation for the
differences between UI and DB model
classes.

It is important to remember, when the results
from table 3 are analyzed, that the various
metrics have different units. Some of these
are “big steps” on each representative
measuring scale, while others are “smaller
steps”. As a consequence some coefficients
shows a little impact (e.g.(X)) when they
are compared with others. However, this is
not a criterion for validation to evaluate
predictive utility of these metrics.
More important is the fact that, excepting
metrics NOC, all other metrics seem to have
a very stable impact on different categories
of classes (DB, UI, etc.), and this is
encouraging because it allows extracting a
conclusion on the fact that the
type’s variables are generally comparable. If
it had been taken into account various types
of defects separately, the results would have
been different.

5 Conclusions
In this experiment, were collected data on the
errors encountered in object-oriented
classes. Based on these data was examined
how much the predisposition to form internal
features was influenced (e.g. size and
cohesion) and external (e.g. coupling) of OO
classes. From the results presented above,
five of the six metrics used to estimate
appear to be useful to make the prediction
about error-prone classes in primary phases
of the life cycle. This empirical validation
shows that most of these metrics can be used
as indicators of quality. In addition, many of
these metrics appear to be complementary
indicators that are relatively independent of
the others.
Also it can be said that OO matrix used
appear to be better predictors than the best
set of "traditional" matrix for code that can
be applied to the collected data set, and
which, moreover, can only be collected in the
final stages of the process of developing OO
software systems.
Through this case study was aimed at

obtaining a better understanding of the
impact of OO design strategies (e.g. simple
than that multiple inheritance) on the density
of errors and reprocessing, but because of
"difficulties" encountered in data collection it
wasn’t possible to analyze the ability to make
predictions of OO matrix related to
reprocessing. It should be noted that this
obstacle could be overcome by "improving"
the process of collecting data to determine
how much effort was made to every class.
Studying the differences between the various
OO languages, in accordance with the
definitions of metrics and with the
experimental results represents another
deserve factor worth mentioning. Thus, the
predictive capabilities of the propensity to
errors of the set of metrics, analyzed in this
experiment may be different, depending on
the programming language used. To assess
this capability set of OO design, metrics must
be validated within OO programming
languages (e.g. C + +, Java, etc.).

References
[1] V. R. Basili, L. Briand, W. Melo,

“Measuring the Impact of Reuse on
Quality and Productivity in Object-
Oriented System”, Technical Report,
University of Maryland, January 2005,
CS-TR-3395.

[2] G. Barnes, B. Swim, “Inheriting
Software Metrics”, Journal of Object-
Oriented Programming, November-
December, 2003, pp.27-34.

[3] K. P. Birman, R. van Renesse, Reliable
Distributed Computing with the Isis
Toolkit, IEEEComputer Society Press,
2004.

[4] E. Gamma, R. Helm, R. Johnson, J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software,
Reading, MA: Addison-Wesley, 2005.

[5] D. Hosmer, S. Lemeshow, Applied
Logistic Regression, Wiley-
Intersciences, 1999, pp.56-92.

[6] R. M. Lyu, Handbook of Software
Reliability Engineering, IEEE Computer
Society Press, Computing McGraw-Hill,
1996.

Informatica Economică vol. 14, no. 4/2010 29

[7] D. C. Schmidt, A. Gokhale, T. Harrison,
G. Parulkar, “A High-Performance
Architecture for Real-time CORBA”,
IEEE Communications Magazine, vol.

14, February 2007.
[8] D. A. Young, Object-Oriented

Programming with C++ and
OSF/MOTIF, Prentice-Hall, 2002.

Marian-Pompiliu CRISTESCU has graduated the Faculty of Planification
and Economic Cybernetics in 1985, he holds a PhD diploma in Economics
from 2003, obtained at the Faculty of Cybernetics, Statistic and Economic
Informatics from the Academy of Economic Studies in Bucharest. Between
1985 and 1991 he worked as an analyst – programmer at the I.A.C.M
Computation Office in Olt – Slatina and at the Electronic Computation
Territorial Center in Sibiu. In 1991 he joined the university teaching system.

Presently, he is a full assistant professor in Economic Informatics at the Faculty of Economic
Sciences - “Lucian Blaga” University of Sibiu. He is the author of 8 books and over 60
scientific articles in the field of software quality, programming environments, data bases and
economic informatics systems. He is equally focused on software development, being the
author or co-author of over 25 programming systems for economic management. He has
participated as a project director or as a leading team member at 8 research contracts. He is an
active member of the scientific and editing committee for the following magazines and
journals: Economic Informatics, Journal of Applied Quantitative Methods, The Economic
Magazine edited by the Academy of Economic Studies of Moldavia – Chişinău and the
„Lucian Blaga” University of Sibiu. He has participated in the scientific committee of over 10
national and international conferences, for the Informatics section and has coordinated the
editing of 2 volumes with the projects of some international scientific conferences.

Vasile-Laurenţiu CIOVICĂ has graduated the Faculty of Science, in 2008
gaining a Bachelor of Science degree in Information Technology with a
thesis on Translators and Interpreters for Code Generation and Software
Optimization. In 2010 he gained a Master of Management degree in the field
of Cybernetics, Statistics and Economic Informatics with a thesis on
Intelligent Agents. He is currently a PhD student at Academy of Economic
Studies in Bucharest. Between 2006 and 2010 he worked as a programmer at

a company from Sibiu. Since January 2010 he works as an Independent Consultant. He is the
author and co-author of more than 12 scientific articles in the field of software quality and
optimization, code generation techniques, collaborative systems, data bases, programming
environments and techniques, mobile platforms and economic informatics systems. Besides
the scientific activity he is also an active software developer, being the author of few
applications. Some of the created applications were presented to different student’s scientific
conferences where he was distinguished with 1 excellence award, 6 first awards, 1 second
award and 2 third awards. His area of interests includes among others: software quality,
optimization techniques and algorithms, code generation techniques, economic informatics
systems, intelligent and collaborative systems, mobile platforms.

