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Kernel methods and support vector machines have become the most popular learning from 
examples paradigms. Several areas of application research make use of SVM approaches as 
for instance hand written character recognition, text categorization, face detection, 
pharmaceutical data analysis and drug design. Also, adapted SVM’s have been proposed for 
time series forecasting and in computational neuroscience as a tool for detection of symmetry 
when eye movement is connected with attention and visual perception. The aim of the paper is 
to investigate the potential of SVM’s in solving classification and regression tasks as well as 
to analyze the computational complexity corresponding to different methodologies aiming to 
solve a series of afferent arising sub-problems. 
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Introduction 
Support vector machines were introduced 

and first applied to classification problems as 
alternatives to multilayer neural networks. 
The SVM’s have empirically proved to give 
good generalization performance on a wild 
variety of problems such as hand written 
character recognition, text categorization, 
face detection, pedestrian detection, 
pharmaceutical data analysis, and drug 
design. The high generalization ability 
provided by support vector classifiers has 
inspired and encouraged several attempts on 
computational speed ups as well as the 
fundamental theory of model complexity and 
generalization.  
The main drawback in SVM based 
approaches is that the training algorithms for 
SVM’s are slow, complex, subtle and 
difficult to implement. Training a SVM 
corresponds to solving a linearly constrained 
quadratic problem (QP) in a number of 
variables equal to the number of data points, 
this optimization problem becoming 
challenging when the number of data points 
exceeds few thousands. Because the 
computational complexity of the existing 
algorithms is extremely large in case of few 
thousands support vectors and therefore the 

SVM QP-problem becomes intractable, 
several decomposition algorithms that do not 
make assumptions on the expected number of 
support vectors have been proposed instead.  
The kernel methods were developed as 
suitable tools aiming to improve the 
classification performances of SVM’s by 
increasing the length of the representation of 
the input data by projecting them into a 
higher dimensional feature space. The 
“kernel trick” is the core of a more refined 
SVM approaches and is essentially based on 
the particular kernels that offer better 
generalization without increasing the 
computational effort. Any kernel method 
solution comprises two parts: a module that 
performs the mapping into the embedding or 
feature space and the learning algorithm 
designed to discover linear patterns in that 
space.  
The fundamental theoretical result in using 
symmetric positive definite kernels was 
established by Mercer (Mercer, 1909). So far 
several types of kernel methods have been 
proposed, as for instance SVM’s kernel 
principal component analysis, kernel 
Gramm-Schmidt, Gaussian processes and 
base-point machines.  
For making SVM more practical, several 
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algorithms have been developed such as 
Vapnik’s chunking, Osuna’s decompositions 
and Joachims’s SVMlight. They make the 
training of SVM possible by breaking the 
large QP-problem into a series of smaller 
QP-problems and optimizing only a sub-set 
of training data patterns at each step. Because 
the subset of training data patterns optimized 
at each step is called the working set, these 
approaches are referred as the working set 
methods.  
Recently, a series of works on developing 
parallel implementation of training SVM’s 
have been proposed. A parallel SVM is a 
mixture of SVM’s that are trained in 
simultaneously using sub-sets of the training 
data set, the results of each SVM being 
combined by training a multilayer perceptron 
or by collecting the support vectors in each 
SVM to train another new SVM.  
The content of the survey is structured on 
five sections. The linear maximal margin 
classifier in case of linearly separable data 
and its extension to the nonlinearly separable 
input data are presented in the first sections 
of the paper. The fundamentals of SVM 
kernel-based methods are briefly exposed in 
the fifth section. The final section is a survey 
on the main classes of algorithms for solving 
the dual SVM QP-problems. 

 
2 Linear Maximal Margin Classifier for 

Linearly Separable Data 
SVM learning is among the best “off-the 
shell” supervised learning algorithms. The 
task is to predict whether a test sample 
belongs to one of two classes, on the basis of 
a finite set of labeled 
examples

( ) { }{ }Niyxyx i
n

iii ≤≤−∈∈= 1,1,1,,, RS . 
The second component of each pair 
( ) S∈ii yx , represents the label of the 
provenance class of ix . 
The classification (recognition) is performed 
in terms of a parameterized decision rule 

wbh ,  { }1,1: −→nR , 

( ) ( )bxwgxh T
wb +=, , ( )
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where RR ∈∈ bw n , . 
Note that with respect to the hyperplane of 
equation ( ) 0:, =+ bxwbwH T the classes 
labeled 1/-1 correspond to the halfspaces 

( )bwHS ,+ and ( )bwHS ,− respectively,  

( ) { }0, >+∈=+ bxwxbwHS TnR  

( ) { }0, <+∈=− bxwxbwHS TnR . 
The data S are called a linearly separable 
data if there exist bw, such that for each 

( ) ( ) ( )bwHSxybwHSxyyx iiiiii ,then1if;,then1if:, −+ ∈−=∈=∈S . 
 
The property of being linear separable is 
obviously equivalent to the condition that 
there exist bw,  such that, for each pair 

( )ii yx ,  of S , ( ) 0>+ bxwy i
T

i . 
For given parameters bw, the functional 
margin of ( )bwH ,  with respect to the 
training sample ( )ii yx ,  is ( )bxwy i

T
ii +=γ̂ . 

The correct classification of ix  holds if and 
only if 0ˆ >iγ , and, from geometric point of 
view, larger values of the functional margin 
correspond to more confident predictions. If 
we define the functional margin of 
( )bwH , with respect to S by i

Ni
γγ ˆminˆ

1 ≤≤
= , 

then the hyperplane ( )bwH ,  separates 
without errors S if and only if 0ˆ >γ . 
In case when S is linear separable, the set of 
parameters ( )bw,  such that ( )bwH , separates 
without errors S  is infinite and in order to 
assure confident classifications, the 
parameters ( )bw, that maximize the 
functional margin γ̂ should be looked for.  
Since, for any 0>α , 

( ) ( )bwHSbwHS ,, ++ =αα , 

( ) ( )bwHSbwHS ,, −− =αα and 
( ) ( )bwHbwH ,, =αα , that is in case both 

parameters w and b by are multiplied by any 
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positive constant we obtain the same 
hyperplane and the same decision rule 
(classifier). Consequently, we can take 



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
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




w
b

w
w ,  instead of ( )bw, , that is the 

vector whose entries are the coefficients of 
( )bwH ,  can be assume to be an unit vector 

orthogonal on ( )bwH , . 

 
3 Geometric margins 
Let ( )bwH ,  be a hyperplane that separates 
without errors S . For any ( )∈ii yx , S , let 

iγ be the distance of ix  to ( )bwH , . The 
value iγ is the geometric margin of  ( )bwH ,  
with respect to ( )ii yx , .  
 Obviously, if 1=iy  then 
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that is the values of the geometric margins 
are not modified if the parameters w and b 
are multiply by a positive constant.  
The geometric margin of ( )bwH ,  with 
respect to S is iNi

γγ
≤≤

=
1
min . 

 
4 The optimal margin classifier for 
linearly separable data 
For a given training set, a natural 
desideratum is to find a decision boundary 
that maximizes the geometric margin, that is 
to find a classifier that separates the positive 
and the negative training examples with a 
“gap” between them (the geometric margin). 
For a linear separable training set the optimal 
margin classifier is a hyperplane ( )bwH , , 
solution of the constrained optimization 
problem  
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that is, we want to maximize γ  such that the 
functional margin of each training sample is 
at least γ .  

Since 
w
γγ
ˆ

= , the problem (1) is equivalent 

to, 
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so the problem is equivalent to, 
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If we impose the condition that the functional 
margin equals 1, the problem of optimal 
margin classifier becomes a quadratic 
programming problem 

( )



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2
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)2(

i

2

 

 
Any solution of (2) is a canonical optimal 
margin classifier for the linear separable 
dataS .  
In order to solve the problem (2) we use the 
Lagrange multiplier method. Let 
( )NbwL ααα ,...,,,, 21  be the objective 

function,  

 (3)
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where Nααα ,...,, 21 are nonnegative 
Lagrange multipliers. 
The optimal solution is given by the saddle 
point for L, ( )*** ,, αbw , when L is minimized 
with respect to w and b and maximized with 
respect to 0,...,, 21 ≥Nααα . The Karush-
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Kuhn-Tucker (KKT) conditions for the 
objective function (3) are:  
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The primal optimization problem:  
1. maximize L with respect to α , 0≥α , get 

( ) ( )αθ
α

;,max, bwLbwp =   

2. minimize ( )bwp ,θ  with respect to w,b. 
The dual optimization problem:  

1. minimize L with respect to w,b, get 
( ) ( )ααθ ;,min

,
bwL

bw
d =

 
2. maximize ( )αθ d  with respect to α , 

0≥α . 
The optimal solution is ( )*** ,, αbw , a saddle 
point for L, such that 
( )=*** ,, αbwL

( ) ( )αα
αα

;,minmax;,maxmin
,,

bwLbwL
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The dual problem for L is stated as the 
unconstrained optimization problem 

( )α;,minimize
,

bwL
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The space of critical points is the set of the 
solutions of the system 
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Note that the Hessian matrix of L with 
respect to w, b is, ( )( ) nw IbwLH =α;,  
that is L is minimized in any critical point.  
The set of critical points is 
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The maximization of ( )αθ d yields to the constrained concave quadratic problem (QP) 
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Note that the dual Lagrangean ( )αθ d  
expressed in terms of the training data 
depends only on the scalar product of input 
pattern ( )j

T
i xx , the number of unknown 

variables being equal to the number of 
training data.  

 

Let ( )TN
**

2
*

1
* ,...,, αααα =  a solution of the 

SVM-QP problem (4), consequently the 
optimal value of the parameter w 

is ∑
=

=
N

i
iii xyw

1

** α . The KKT 

complementarity conditions describing the 
relationships among the inequality 
constraints and their associated Lagrange 
multipliers are, 
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The training data ix  for which 0* ≠iα are 
called support vectors. Obviously, for any 
support vector the relation 
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the hyperplane ( )bwH ,*  and 0* ≠iα  is 
called active Lagrange multipliers. 
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The parameter b can not be explicitly 
computed by solving the SVM problem. A 
suitable value *b  of b such that 

1** ≥





 + bxwy i

T
i  holds for all input data. 

If 1=iy , then  

1** ≥





 + bxw i

T
⇔

i
T

ii
T

xwyxwb *** 1 −=−≥ , that is 

i
T

y
i

i
T

i

y
i

xwxwyb

ii

*

1

*

1

* min1max
==

−=





 −≥  

If 1−=iy , then 

1** −≤





 + bxw i

T
⇔ i

T
xwb ** 1−−≤ , that 

is i
T

y
i

i
T

y
i

xwxwb

ii

*

1

*

1

* max11min
−=−=

−−=





 −−≤  

Consequently, a suitable value of *b  should 
be selected such that  

i
T

y
i

i
T

y
i

xwbxw

ii

*

1

**

1

max1min1
−==

−−≤≤−  

In case the middle of the 

interval















−−−

−==

i
T

y
i

i
T

y
i

xwxw

ii

*

1

*

1

max1,min1 is 

selected, we get  













+−=
=−=

i
T

y
ii

T

y
i

xwxwb
ii

*

1

*

1

* minmax
2
1 . 

The resulted classifier corresponds to the 
decision rule 
( ) ⇒> 0xD x is classified in 1h  
( ) ⇒< 0xD x is classified in 2h  
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( ) ⇒= 0xD x is unclassifiable, 
where ( ) ** bxwxD T += . 

 
5 Nonlinear SVM’s classifier 
In general, classes are not only overlapped, 
but the genuine separation functions are 
nonlinear hypersurfaces.  Consequently, a 
more general type of SV machines is 
required to create nonlinear decision 
hypersurfaces, and able to classify 
nonlinearly separable data. This can be 
achieved by considering the linear classifier 

in the so-called feature space of higher 
dimension than the dimension of the initial 
input space.  
The basic idea of designing nonlinear SVM’s 
is to consider g:Rn →Rs that maps the input 
space Rn onto the feature space Rs, where 

ns > . Consequently, to each input vector 
∈ix Rn corresponds the s-dimensional 

representation 
( ) ( ) ( ) ( )( )isiii xgxgxgxg ,...,, 21= . The SVM-

QP problem (4) in the feature space becomes, 
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There are two main problems when 
performing the mapping g on one hand the 
choice of g should result in a reach class of 
decision hyperplanes and, on the other hand, 
the computation of the scalar product 
( )( ) ( )xgxg T could become very challenging 

if the dimensionality of the feature space is 
very large. This explosion in dimensionality 
can be avoided by noticing that in the QP-
problem (5) as well as in the final expression 
for classifier the training data only appear in 
the form of the scalar product ( )( ) ( )j

T
i xgxg , 

that is the solution can be expressed in terms 
of the kernel function ( ) ( )( ) ( )'', xgxgxxk T= . 
Since the kernel function ( )', xxk is a function 
defined on the input space, using a kernel 
function allows to avoid performing a 
mapping ( )xg at all. In this way, a possibly 
extremely high dimensionality of the feature 
space can be bypassed and, depending on the 
particular kernel, SVM’s operating in an 
infinite dimensional space can be designed. 
Moreover, by applying kernels, we do not 
have to know what the actual mapping 

( )xg is. 
There is a large class of possible kernels 
because a kernel should only fulfill the 
Mercer’s conditions (Mercer, 1909).  In order 
to avoid the explosion of computational 
complexity, the choice of the kernel should 
be such that the computation of 
( ) ( )( ) ( )j

T
iji xgxgxxk =, is in fact carried out 

in the initial input space, this property being 
known under the name of “the kernel trick”.  
For instance, in case 2=n , if we consider 
the maps :, 21 gg  R2 →R3 , :3g  R2 →R4, 
and :4g  R2 →R6 defined by, 
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( ) ( )24 '1', xxxxk T+=  
To each of the maps 

4,3,2,1, =igi corresponds a different 
nonlinear decision hypersurface in the input 
space, but the computations in a higher 
dimension feature space can be carried out in 
the input space. 
Some of the most frequently used positive 
definite kernels are  
 ( ) xxxxk T'', =  - linear, dot product 

kernel; 

 ( ) ( )dT xxxxk 1'', +=  - complete 

polinomial of degree d; 
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RBF; 

 ( ) ( )θκ += xxxxk T'tanh',  - multilayer 

perceptron; 

 ( )
β+−

=
2'

1',
xx

xxk - inverse 

multiqadric kernel. 
 In case k is a positive definite kernel, the 
Gramm matrix ( )ji xxkG ,=  is a positive 
definite matrix, and moreover any symmetric 
positive definite matrix can be regarded as a 
kernel matrix, that is an inner product matrix 
in some space. 
In case a certain positive definite kernel k 
that fulfills Mercer’s conditions, the SVM 
QP-problem (4) becomes,   
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In the more general case when the input data 
set S is nonlinear separable, the set of 
feasible solutions is empty. A natural 
extension of the SVM in this case is 
represented by modifying the objective 
function of the problem (2) to include the 
effect of misclassifications. In this case, the 
original SVM problem is formulated as  
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where 1,0 ≥> σc are convenient selected 
constants and F is a convex function such 
that ( ) 00 =F , and Nξξξ ,...,, 21  are the slack 
variables. The meaning of the slack variables 
is that the example ix for which 1≥iξ  is 
misclassified by the hyperplane 
( ) 0:, =+ bxwbwH T .   

In the particular case when 1=σ and 
( ) uuF = , using the Lagrange multipliers 

method, we get the objective functions, 
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where ( )TNααα ,...,1=  and 

( )TNβββ ,...,1= are nonnegative Lagrange 
multipliers. Using the KKT conditions, 
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Consequently, the dual problem becomes the 
constrained QP-problem 
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The parameter *w of the soft margin (L1-
SVM) hyperplane is      

∑
=

=
N

i
iii xyw
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where ( )**
2

*
1

* ,...,, Nαααα =  is a solution of 
(8).                
1. If 0* =iα , since Cii =+ βα *  and 

0=iiξβ , we get ,0≠= Ciβ that is 
0=iξ which means that the example ix is 

correctly classified. 
2. If Ci << *0 α  then 

( )( ) 01 =+−+ ii
T

i bxwy ξ , since 

Cii =+ βα *  and 0=iiξβ , we get ,0≠iβ  

that is 0=iξ  and ( ) 1=+ bxwy i
T

i . In this 
case ix  is correctly classified. The example 

ix is called an unbounded support vector. 
3. If Ci =α  then 0=iβ and 0≥iξ , that is 

( ) ii
T

i bxwy ξ−=+ 1 . We say that ix  is a 
bounded support vector, which is correctly 
classified if 10 <≤ iξ and misclassified if 

1≥iξ respectively.  
If we denote by S a set of support vectors and 
by U the set of unbounded support vectors, 
the expression of the decision function is, 
( ) ∑

∈
+=

Sx

T
iii

i

bxxyxD α     

where ( )∑
∈

−=
Ux

i
T

i
i

xwy
U

b 1 . 

The classification decision is 
( )
( )




∈⇒<
∈⇒>

2

1

0
0

hxxD
hxxD

    

Note that in case U=S, the set ( ) 0=xD  is the 
generalization region. 

 
A natural extension to the case when the 
input data are projected in a higher 
dimension feature space by the map g:Rn 
→Rs , ns > , yields to the objective function, 
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or, using the kernel ( )', xxk , 
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In this case, the dual SVM QP-problem 
becomes, 
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Again, the only difference to the separable 
nonlinear classifier is the upper bound C on 
the Lagrange multipliers iα . In this way, we 
limit the influence of training data points that 
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will remain on the “wrong” side of a 
separating nonlinear hypersurface. After the 
dual variables are computed, the decision 

hypersurface ( )xD  is  

 

( ) ( ) ( ) bxxkybxxkyxD
Sx

iii
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iii
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where S a set a support vectors. 
The existence and calculation of the bias b is 
now not a direct procedure as it is for a linear 
hyperplane, depending upon the particular 
kernel the bias b can be implicitly part of the 
kernel function. A more detailed discussion 
and analysis can be found in (Kecman, 
Huang, Vogt, 2005) as well as in (Vogt, 
Kecman, 2005). 

 
6 Methods to solve the dual SVM QP-
problems 
Methods to solve the corresponding dual QP 
optimization problems to SVM learning 
include Sequential Minimal Optimization 
(SMO), decomposition methods (Smola, 
Schőlkopf, 1999) and (Laskov, 2002), and 
methods to solve the least squares SVM 
formulations (Cawley, Talbot, 2002), 
(Keerthi, Shevade, 2003) and (Suykens, De 
Brabanter, Lukas, 2002) as well as software 
packages as SVMlight (Joachims,1998.), 
mysvm (Rueping, 2003) and many others. 
Since the size of the QP problems depends 
on the number of data, the problem can not 
be straightforward solved via standard QP 
techniques.  
In 1982 Vapnik (Vapnik, 1982) proposed a 
method to solve the QP problem arising from 
SVM referred as “chunking”. The idea of the 
chunking algorithm uses the fact that the 
value of the quadratic form remains 
unchanged if the rows and columns of the 
matrix of entries j

T
iji xxyy corresponding 

to zero Lagrange multipliers are removed. 
Therefore, the large QP problem can be split 
into smaller QP problems whose ultimate 
goal is to identify all the non-zero Lagrange 
multipliers and discard all the zero ones. 
Chunking reduces significantly the size of 
the matrix corresponding to the particular QP 
problem, but still can not handle any large 

scale training problem.       
A new class of QP algorithms for SVM 
derived from the developments proposed by 
Osuna (Osuna, Freund and Girosi, 1997). 
Briefly, Osuna proved that the large QP 
problem can be reduced to a series of smaller 
QP sub-problems based on the idea that as 
long as at least one example that violets the 
KKT conditions is added to the examples 
used in the previous sub-problem, at each 
step the overall objective function is reduced 
and a feasible point that obeys the constraints 
is maintained. This way the algorithm 
proposed by Osuna performs by adding one 
example and subtracting another example at 
each step.  
Sequential minimal optimization (SMO) 
algorithm proposed by Platt (Platt, 1998) is a 
simple algorithm that allows to solve the 
SVM-QP problem without extra-matrix 
storage by decomposing the overall QP 
problem into simple QP sub-problems using 
Osuna’s theorem (Osuna, Freund and Girosi, 
1997). Unlike the previous methods, the 
SMO algorithm solves the smallest 
optimization problem at each step. 
Obviously, in case of the standard SVM-QP 
problem the smallest possible optimization 
problem involves two Lagrange multipliers, 
because the Lagrange multipliers must fulfill 
a linear inequality constraint. The SMO 
algorithm performs by choosing two 
Lagrange multipliers to jointly optimize, 
finds the optimal values for these multipliers 
and updates the SVM accordingly.  
The convergence of the SMO algorithm is 
guaranteed by the Osuna’s theorem because 
one of the Lagrange multipliers selected at 
each step violates the KKT conditions, that is 
at each step the value of the objective 
function decreases. In order to speed 
convergence, several heuristics for selecting 
the two Lagrange multipliers have been 
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proposed.  
For the various test sets, the training time 
required by SMO empirically scales between 
N and 2.2N . The training time of chunking 
scales between 2.1N and 4.3N . The scaling 
of SMO can be more than one order better 
than chunking. For the real world test sets, 
SMO can be a factor of 1200 times faster for 
linear SVM’s and a factor of 15 times for 
nonlinear SVM’s. Because of its ease of use 
and better scaling with training set size, SMO 
is a strong candidate for becoming the 
standard SVM training algorithm.  
Generalizations and improvements have been 
recently proposed by many others. For 
instance, in (Cao, Keerthi, Ong & all, 2006) a 
parallel version of SMO is proposed for fast 
training SVM. Unlike the sequential SMO 
algorithms, which handle all the training data 
points using one CPU processor, the parallel 
SMO first partitions the entire training data 
set into smaller subsets and then 
simultaneously runs multiple CPU processors 
to deal with each of the partitions data sets.  
Also, in order to improve the generalization 
capacities, several approaches have been 
communicated. For instance, in (Sanchez, 
2003) it is proposed a method to improve the 
generalization capabilities of SVM classifiers 
based on the enhancement of the special 
resolution on the boundary surface by 
introducing a conformal mapping into the 
Riemannian geometry induced by the 
classifier kernel function. Several 
experimental results pointed out the validity 
of these information-geometrical 
considerations as an approach to optimal, 
data-dependent SVM kernel choice and 
generalization improvement.  
Another example of an approach for 
improving generalization when SVM 
learning is applied to RBF networks 
determines the optimal spread parameter for 
a Gaussian kernel in classification and 
regression problems using the Fisher 
discrimination and scale space theory 
respectively.    
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