
Informatica Economică vol. 13, no. 4/2009 129

A Modular Logic Approach for Expressing Web Services in XML
Applying Dynamic Rules in XML

Theodoros MITAKOS, Ioannis ALMALIOTIS

Technological Educational Institute of Chalkida, Chalkida, Greece
mitakos@teihal.gr, alma@teihal.gr

RuleML is considered to be a markup language for the semantic web. It allows the enrichment
of web ontologies by adding definitions of derived concepts and it enhances interoperability
among different systems and tools by publishing rules in an XML format. Moreover the in-
creasing demand for interfaces that enhance information sharing has given rise to XML doc-
uments that include embedded calls to web services. In this paper we propose a variation of
RuleML that is based on modular logic programming. Our approach is based in a two level
architecture. In the first level a modular logic language, called M-log, is presented. This lan-
guage encompasses several mechanisms for invoking web services. In the second level we ex-
ploit the semantics of M-log to present a variation of RuleML with rich modeling capabilities.
Formal foundations for this variation are given through direct translation to M-log seman-
tics.
Keywords: Knowledge Management, XML, Modular Logic Programming, E-Services

Introduction
XML [4] has succeeded to be established

both in the research community and also in
software development industry as a self-
describing, semi structured data model. It has
become a standard for data exchange between
applications over the Web. On the other hand
exchange of static data is not enough for con-
temporary web applications. Modern web ap-
plications need not only mere data exchange
but also powerful programmatic interfaces
that are able to support communication and
interoperability in highly diversified envi-
ronments. Web service is the commonly used
term to describe such programmatic interfac-
es in the web.
Consider as a simple example the case where
a library borrows books to readers. We want
to model in XML the possible readers, the li-
brary with the available books and the busi-
ness rules that allow the borrowing of books.
This scenario presents a number of difficul-
ties that traditional XML modeling capabili-
ties fall short to satisfy. It is needed to model
business logic that expresses rules such as to
whom books are borrowed. It is also needed
to adopt a flexible scheme for expressing the
dynamic nature of stored information e.g. the
possibility of enriching the library with new
books or some books to become unavailable

to readers because they are already borrowed
to some other readers. Moreover XML doc-
uments have to model calls to other XML
documents e.g. information about available
books may exist in one document and regis-
tered readers may exist in another document
but we need to know if a reader can be bor-
rowed a book.
Web services need to invoke programs over
the web so that dynamic, up-to-date data to be
extracted from various sources of informa-
tion. Several interesting attempts have been
made towards this direction. SOAP [2] and
WSDL [3] are standards, based on XML, that
specify the exchange of structured informa-
tion in the implementation of web services.
Additionally AXML [1] is an interesting dec-
larative framework that harnesses Web ser-
vices for distributed data management, and is
put to work in a peer-to-peer architecture.
Our approach also specifies a declarative
framework that allows both the exchange of
intentional and extensional information. It is
based on modular logic programming and on
the language RuleML [7]. We propose a two
level architecture that it based on well estab-
lished standards. It also has firm theoretical
foundations, concise and elegant syntax.
We focus on modeling calls to web services
as Datalog queries among distributed Ru-

1

mailto:alma@teihal.gr�
http://www.webopedia.com/TERM/R/markup_language.html�
http://www.webopedia.com/TERM/R/Semantic_Web.html�

130 Informatica Economică vol. 13, no. 4/2009

leML documents. The main aspects that are
considered are operational semantics that
form the foundations of calls to web services
and appropriate syntax that expresses differ-
ent ways of information sharing among web
interfaces. The first objective is accomplished
with the introduction of a modular logic lan-
guage [5,6] and the second objective with the
introduction of a RuleML variation, that is
built upon the first language.
This paper is organized as follows. First we
present briefly the language Datalog and then
a variation of Datalog called M-log. Addi-
tionally we present XML and RuleML in
brief. Next we present the syntax and seman-
tics of RuleML-U. We conclude giving direc-
tions for future research.

2 Datalog
In this section we give a brief presentation of
a “toy” deductive database language called
Datalog [8]. Datalog is a rule based language.
A rule has the form:

h:-b1,b2,…bn

where h,b1,b2,….,bn are atoms, that is predi-
cates or relation names with variables or con-
stants as arguments. The symbol :- means
implies. The left hand side of :- is called head
and is always consisted of one and only one
atom. The right hand side of :- is consisted
by one or more atoms. The atoms in the body
are coma separated. In the context of a Data-
log rule coma means logical AND. A variable
appearing in the head is called distinguished.
A variable that appears in the body is called
non distinguished. Distinguished variables
are universally quantified. Non-distinguished
variables are existentially quantified.
The following sentence describes the seman-
tics of a rule. If there exist values of the non
distinguished variables that make all sub
goals of the body true then the head of the
rule is also true. That is the head of a rule is
concluded true if all literals in its body can be
concluded.
A collection of rules is called Datalog theory.
Moreover a Datalog program consists of a
collection of rules. A rule that has only head

and nobody is called fact. The set of facts in a
program is called EDB that is extensional da-
tabase. The set of rules with body and head is
called IDB that is intentional database. In the
following we consider that no negative liter-
als exist in the body of rules. The semantics
of a Datalog program without negation is giv-
en by the least Herbrand model.
The expressive power of Datalog without re-
cursive rules is the same as SQL without ag-
gregation and grouping. Moreover if recur-
sive rules are allowed the expressive power of
Datalog is greater than the expressive power
of relational algebra.
It can thus be considered as the subset of log-
ic programming needed for representing the
information of null-value-free relational data-
bases, including (recursive) views. That is, in
Datalog we can define facts corresponding to
explicit rows of relational tables and rules
corresponding to tables defined implicitly by
views.

3 The language M-Log
In this section we are going to present a lan-
guage that is based on Datalog and modular
logic programming. It is also capable to ex-
press message passing mechanism with vari-
ous ways.

3.1 Defnitions and Syntax of M(essage)-
LOG
In classical logic programming there are no
tools for structuring and modularizing pro-
grams. In this section we present the syntax
of the language m(essage)-log which extends
the traditional notion of unit by allowing
clauses to exchange messages. A unit can be
considered as a named, finite collection of
rules. The mechanism of message exchanging
is well known as message passing in object
oriented languages. Actually, in object
oriented terms it means a method invocation.
After the execution of the invoked method the
results are passed back to the calling program.
In the following we will show four mechan-
isms of message passing that can be adopted
by M-LOG. The first can be considered as
static or early execution mechanism. The oth-
er three can be considered as dynamic or late

Informatica Economică vol. 13, no. 4/2009 131

execution mechanisms. The syntax of Data-
log is enhanced with units and with symbols
⊃ and >. If u is a unit and A is an atom then
u⊃A is atom and u>A is also an atom. If p is
an atom then u⊃p is called external atom and
u<p is called internal atom. The alphabet of
M-LOG consists of a finite set of unit names
U, a finite set of predicate names P, a counta-
ble set of variables V and a finite set of con-
stants C. To every u ∈U we assign a set of
clauses. The clauses that correspond to unit u
are called unit implementation. The set of
ground instances of the clauses of a unit im-
plementation is denoted as |u|. Moreover, if p
is a predicate name, the set of clauses that
have p as their head is called implementation
of p. If S is a set of clauses then we denote
with π(S) the set of predicate names defined
by the clauses of S. Is A is an atom then pred
(A) is the predicate of A.
Datalog is a database query language based
on logic programming and consists of func-
tion free Horn clauses. The clauses in our
proposal follow the syntax of positive Data-
log clauses extended with operators >, ⊇, ⊃
and ⊕. E.g. p:-q, u>r or p:-q, u⊃r.
Operator > accepts two operands. The first
operand is a unit identifier u and the second is
a goal r. Let say that a rule ru’ = pu’:-q1u’,
q2u’, .., u>r , .., qn

Operator ⊇ accepts two operands. The first
operand is a unit identifier u and the second is
a goal r. Let say that a rule ru’ = pu’:-q

u’ exists in unit u’. It
means that the goal r must be evaluated using
the predicates, π(u), of unit u. That is the
evaluation of r will take place in unit u. If r is
evaluated true in unit u then u>r is also true in
unit u’.

1u’,
q2u’, .., u⊇r , .., qn

Operator ⊃ accepts two operands. The first
operand is a unit identifier u and the second is
a goal r. Let say that a rule ru’ = pu’:-q

u’ exists in unit u’. This
means that all EDBs of unit u that have pre-
dicate r must be imported from unit u to unit
u’. Then the evaluation of goal r will take
place in unit u’. After the evaluation of r the
imported EDBs will be rejected.

1u’,
q2u’, .., u⊃r , .., qn

Operator ⊕ accepts two operands. The first
operand is a unit identifier u and the second is
a goal r. Let say that a rule ru’ = pu’:-q

u’ exists in unit u’. This
means that all IDBs of unit u that have predi-
cate r must be imported from unit u to unit u’.

Then the evaluation of goal r will take place
in unit u’. After the evaluation of r the im-
ported IDBs will be rejected.

1u’,
q2u’, .., u⊕r , .., qn

If A is a Datalog atom then A is an M-LOG
atom too. A is called simple atom.

u’ exists in unit u’. This
means that all EDBs and IDBs of unit u that
have predicate r must be imported from unit u
to unit u’. Then the evaluation of goal r will
take place in unit u’. After the evaluation of r
the imported EDBs and IDBs will be rejected.

If A is a Datalog atom then u>A is an M-
LOG atom too.
If A is a Datalog atom then u⊇A is an M-
LOG atom too.
If A is a Datalog atom then u⊃A is an M-
LOG atom too.
If A is a Datalog atom then u⊕A is an M-
LOG atom too.
Any M-LOG atom that is not simple atom is
called composite atom. Composite atoms can
appear only in the body of a rule.
The set of EDBs for a unit u is denoted as
EDB(u) and the set of IDBs for a unit u is de-
noted as IDB(u). Let Su set of clauses that
belong to unit u, then Su=EDB(u) ∪IDB(u).
If p is a predicate name that belongs to a unit
u we denote as EDB(u,p) the set of EDBs
that belong to unit u and have predicate name
p. Moreover If p is a predicate name that be-
longs to a unit u we denote as IDB(u,p) the
set of EDBs that belong to unit u and have
predicate name p.
In our approach a unit consists of two sets of
clauses, namely its EDBs and its IDBs. Oper-
ators EDB,  IDB and  are used to
handle composition of units. They are defined
as follows:
up  EDB uq = Sup ∪ EDB(uq) =u
u

z
p  IDB uq = Sup ∪ IDB(uq) =u

u
z

p  uq = Sup ∪ Suq =u
Moreover

z

up  EDB,r uq = Sup ∪ EDB(uq,r) =u
u

z
p  IDB,r uq = Sup ∪ IDB(uq,r) =u

u
z

p  r uq = Sup ∪ EDB(uq, ∪r) IDB(uq,r)
=uz

132 Informatica Economică vol. 13, no. 4/2009

uzpriv ∈ = {A:-G uppriv

}

3.2 Operational Semantics of M-Log
The operational semantics of M-LOG is giv-
en as follows. The proof predicate ├ is de-
fined by the following inference rules, where
ε is the identity substitution and is the empty
formula.
Empty for-
mula

 u├RεR
Atomic for-
mula

u├RσRG θ h:-G∈u
θ= mgu(g,h) u├ RθσRg

Conjunction u├RθRGR1R ∧
u├RσRGR2R θ

 u├ RθσR GR1,R
GR2

Message
passing

ữ├RθRG pred(G) ∈π(ữ)

 u├RθR ữ>G ữ≠u
EDB facts in-
sertion

u'├RθRg

u’=uR R 
R

EDB,gR ữ
 ữ≠u

 u├RθR ữ⊇g
IDB rules
insertion

u'├RθRg u’=uR R 

R

IDB,gR ữ
 ữ≠u u├RθR ữ⊃g

EDB facts
and IDB
rules inser-
tion

u'├RθRg

u’=uR R 
R

gR ữ
 ữ≠u

 u├RθR ữ⊕g

4 XML
XML (Extensible Markup Language) is a
flexible tag based language that is used for
data exchange on the World Wide Web,
intranets, and elsewhere. Unlike HTML
makes it possible to define the content of a
document separately from its formatting. The
basic object in XML is the XML document.
Elements and attributes are the main structur-
ing concepts that are used to construct an
XML document. We do not consider in this
paper additional concepts such as identifiers
or references.
XML documents are structured following the
tree data model. They consist of an element
on the top level that contains all other ele-

ments. This element is called root. An ele-
ment can contain other elements. In case of
an element that does not contain any sub ele-
ment then it is called leave. Attributes in
XML provide additional information that de-
scribes element properties. Attributes are used
together with elements to represent the pieces
of information that compose an XML docu-
ment. A document that conforms to the XML
syntax rules is called well formed. Moreover
constraints on the structure and content of an
XML document can be described by some
form of an XML schema e.g. a DTD. An
XML document that conforms to a specific
XML schema is called valid.
The number of tags that can be used in a doc-
ument is not predefined by the language it-
self. On the contrary the composer of an
XML document is free to use the tags that de-
scribe better the meaning of the data that are
included in the document. The markup sym-
bols that can be used are unlimited and self-
defining. One of the reasons that XML is de-
signed that way is because web applications
need not only to exchange documents but also
to interpret their contents automatically.
XML began as a simplified subset of the
Standard Generalized Markup Language
(SGML) and today it is a formal recommen-
dation from the World Wide Web Consor-
tium. Its success gave birth to application
languages implemented in XML. These in-
clude but are not limited to RuleML,
MathML, GraphML and MusicXML. Nowa-
days XML is not used only as vehicle for in-
formation sharing in a consistent way but also
as specification language for such application
languages.

5 The language RuleML
In this section we will briefly describe the
language RuleML. RuleML is a markup lan-
guage for publishing and sharing rules on the
World Wide Web. It uses Datalog as the ker-
nel of its family of sublanguages. Its seman-
tics is defined via Herbrand models. RuleML
builds a hierarchy of rule sublanguages upon
XML, RDF, XSLT, and OWL. In the follow-
ing we give an example that shows how Data-
log rules can be expressed in RuleML. Let's

http://en.wikipedia.org/wiki/Standard_Generalized_Markup_Language�
http://en.wikipedia.org/wiki/MathML�
http://en.wikipedia.org/wiki/GraphML�
http://en.wikipedia.org/wiki/MusicXML�
http://en.wikipedia.org/wiki/Specification_language�
http://www.ruleml.org/modularization/#Model�

Informatica Economică vol. 13, no. 4/2009 133

consider the sentence “John is son of Mary”.
This natural language sentence can be mod-
eled as the following fact in Datalog:
son(john,mary). This simple atom can be
modeled in RuleML as follows:

<Atom>
 <Rel>son</Rel>
 <Ind>john</Ind>
 <Ind>mary</Ind>
</Atom>

Fig. 1. A simple RuleML atom modeled as a

parse tree

Since this markup follows the XML syntax it
can be represented as a kind of parse tree.
Oval drawing corresponds to anonymous,
non-terminal, inner node labeled ‘Atom’.
Figure 1 shows the modeling of a simple Ru-
leML atom as a parse tree.
Rectangular drawings correspond to leaf
nodes with RDF-like literals containing
PCDATA. These terminal nodes are labeled
‘Rel’ and ‘Ind’.
We examine the nodes of the tree left to right
and in a bottom up fashion. Notice that "son"
is marked up as the relation name (table
name) for the fact: <Rel>son</Rel>. On the
same level, the two names "John" and
"Mary" are marked up as individual constants

that are the two arguments (table columns) of
the relation, in the given sequence: <Ind>
john </Ind> and <Ind> mary </Ind>.
The entire relation application constitutes an
atomic formula, marked up by the tags
<Atom> ... </Atom>.
In the following we give an example of a rule.
Consider the following English sentence:
"X is parent of John if John is son of X."
This natural language sentence is an implica-
tion. It can be modeled as the following rule
in Datalog:

parent:-son(john,X)

It can be marked up as the following RuleML
Datalog rule:

<Implies>
 <head>
 <Atom>
 <Rel>parent</Rel>
 <Var>X</Var>
 <Ind> john</Ind>
 </Atom>
 </head>
 <body>
 <Atom>
 <Rel>son</Rel>
 <Ind> john</Ind>
 <Var>X</Var>
 </Atom>
 </body>
</Implies>

This rule is represented as a parse tree in fig-
ure 2.

Fig. 2. A RuleML rule modeled as a parse tree

6 RuleML-U
Various RuleML Datalog implementations
exist. We propose a variation of RuleML that

facilitates implementation and calling of web
services. This variation is based on M-log.
We propose new tags to represent operators, a

134 Informatica Economică vol. 13, no. 4/2009

new operator to express units and a new tag
to express composite atoms of M-log. In the
following we give part of a DTD that speci-
fies operators, units and composite atoms.
<!ELEMENT Operator (#PCDATA)>
<!ELEMENT Unit (#PCDATA)>
<!ELEMENT C-atom (Unit, Operator,
Atom)>
Accepted parsed character data for element
operator are only the abbreviations "ms", "ie",
"ii" and "iei". Abbreviation "ms" stands for
message passing operator and abbreviations
"ie", "ii" and "iei" stand for EDBs insertion,
IDBs insertion, EDBs and IDBs insertion op-
erator accordingly.
We also give an equivalent XML schema.
<?xml version="1.0" encoding="UTF-8"
?>
<xs:schema targetNames-
pace="http://www.ruleml.org/0.9/xsd"
xmlns="http://www.ruleml.org/0.9/xsd
" xmlns:xs =
"http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:annotation>
<xs:documentation xml:lang="en">

</xs:documentation>
</xs:annotation>
<xs:element name="C-atom">
 <xs:complexType>
 <xs:sequence>
<xs:element name="Unit"
type="xs:string"/>
<xs:element name="Operator">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="ms"/>
<xs:enumeration value="ie"/>
<xs:enumeration value="ii"/>
<xs:enumeration value="iei"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Atom"
type="Atom.type" />
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The previous code shows an XML Schema
module for M-Log related RuleML elements.
In the following we demonstrate the model-
ing capabilities our new RuleML variation.
We refer to this variation as RuleML-U. We
consider the following simplified scenario.
Three units that contain EDBs and IDBs are

presented:

Unit Library
borrows(Title):- book(Title), avail-
able(Title)
book(database systems)
book(programming languages)
book(operating sys-
tems)available(programming languag-
es)
available(operating systems)

Unit University
lent(Person,Title):- reader(Person),
Library>borrows(Title)
reader(Person):-
Student⊇classC(Person)
classC(Person):-faculty(Person) fa-
culty(john)faculty(samantha)

Unit Student
classA(nikos) classB(george)
classC(mary) classC(jim)

These three given units correspond to the fol-
lowing RuleML-U documents:

<document name="Library">
<Implies>
<head>
 <Atom>
 <Rel>borrows</Rel>
 <Var>Title</Var>
 </Atom>
</head>
<body>
 <Atom>
 <Rel>book</Rel>
 <Var>Title</Var>
 </Atom>
 <Atom>
 <Rel>available</Rel>
 <Var>Title</Var>
</Atom>
</body>
</Implies>
<Atom>
 <Rel>book</Rel>
 <Ind> database systems </Ind>
</Atom>
<Atom>
 <Rel>book</Rel>
 <Ind> programming languages
</Ind></Atom>
<Atom>
 <Rel>book</Rel>
 <Ind> operating systems </Ind>
</Atom>
<Atom>

Informatica Economică vol. 13, no. 4/2009 135

 <Rel> available </Rel>
 <Ind> programming languages </Ind>
</Atom>
<Atom>
 <Rel> available </Rel>
 <Ind> operating systems </Ind>
</Atom>
</document>

<document name="University">
<Implies>
<head>
 <Atom>
 <Rel>lents</Rel>
 <Var>Person</Var>
 <Var>Title</Var>
 </Atom> </head>
<body>
 <Atom>
 <Rel>reader</Rel>
 <Var>Person</Var> </Atom>
 <C-atom>
<Unit> Student </Unit>
<Operator> ie </Operator>
<Atom>
 <Rel>classC</Rel>
 <Var>Person</Var>
</Atom> </body> </Implies>
<Implies>
<head>
 <Atom>
 <Rel>classC</Rel>
 <Var>Person</Var>
 </Atom> </head>
<body>
 <Atom>
 <Rel>faculty</Rel>
 <Var>Person</Var>
 </Atom>
 <Atom>
 <Rel>faculty</Rel>
 <Ind> john </Ind>
 </Atom>
<Atom>
 <Rel>faculty</Rel>
 <Ind> samantha </Ind>
</Atom> </body> </Implies>
</document>

<document name="Student">
<Atom> <Rel>classA< /Rel>
 <Ind> nikos </Ind>
</Atom>
<Atom> <Rel>classB </Rel>
 <Ind> george </Ind>
</Atom>
<Atom> <Rel>classC< /Rel>
 <Ind> mary </Ind>
</Atom>
<Atom> <Rel>classC </Rel>
 <Ind> jim </Ind>

</Atom>
</document>

A unit called "Library" contains two types of
EDBs, that is book and available. EDB
book denotes the books that library pos-
sesses. EDB available denotes the books
that are currently available for borrowing.
The IDB borrows denotes a business rule for
borrowing books. Similarly a unit called
"Student" contains three types of EDBs, that
is classA, classB and classC. This means
that three different categories of students ex-
ist in unit "Student". Lastly a unit called
"University" contains an EDB called facul-
ty and three IDBs, that is lent, reader and
classC. Notice that in the body of IDB lent
exists a message passing atom, that is Li-
brary>borrows(Title). Moreover in the
body of IDB reader there exists an EDB
insertion atom, that is Stu-
dent⊇classC(Person). In the first case the
computation takes place in unit "Library" and
the atom borrows is concluded in unit "Li-
brary". If it is evaluated true in unit "Library"
then atom Library>borrows(Title) is also
true in unit "University". In the second case
the EDBs with predicate name classC that
belong to unit "Student" will be imported to
unit "University" and they will take part in
the evaluation of atom classC(Person) in
unit "University". If classC(Person) is eva-
luated true in unit "University" then Stu-
dent⊇classC(Person) is also true in unit
"University".

7 Conclusions
In this paper we presented a variation of lan-
guage RuleML that is called RuleML-U. This
variation is influenced by modular logic pro-
gramming. It provides a flexible and rich in-
terface for implementing calls to web servic-
es. We intend to extend our research on Ru-
leML-U and enrich it with features such as
object identity, inheritance and information
hiding giving an object oriented flavor to this
deductive language. We also intend to build
a compiler for RuleML-U documents.

136 Informatica Economică vol. 13, no. 4/2009

References
[1] S. Abiteboul, A. Bonifati, G. Cobena, I.

Manolescu and T. Milo, “Dynamic XML
Documents with Distribution and Replica-
tion,” In Proc. of ACM SIGMOD, 2003.

[2] Simple Object Access Protocol (SOAP)
1.1. http://www.w3.org/TR/SOAP.

[3] Web Services Definition Language
(WSDL). http://www.w3.org/TR/wsdl.

[4] Extensible Markup Language (XML) 1.0
(Fifth Edition).
http://www.w3.org/TR/REC-xml.

[5] F. Afrati, I. Karali and T. Mitakos, “Data-
log, Units and Information Hiding,” Pro-
ceedings of the 1997 International Confe-
rence in Languages and Models with Ob-
jects (LMO 97) - in cooperation with
ECOOP'97, pp. 147-159, October 1997,
Brest.

[6] T. Mitakos and I. K. Almaliotis, “A mod-
ular logic approach for P2P networks, A
deductive object oriented framework for
P2P networks,” 16th International
shop on Systems, Signals and Image
Processing, June 18-20, 2009 Chalkida,
Greece.

[7] The Rule Markup Initiative, Available at:
http://ruleml.org/

[8] S. Ceri, G. Gottlob and L. Tanca, “What
you always wanted to know about datalog
(and never dared to ask),” IEEE
Transactions on Knowledge and Data
Engineering, Vol. 1, No. 1, March 1989.

Theodoros MITAKOS graduated the Faculty of Computer Engineering and
Informatics at University of Patras in 1992. He achieved the PhD in Infor-
matics in 1998 with thesis on Deductive and Object Oriented Databases at
National Technical University of Athens. He has published as author and co-
author over 15 articles in national and international conferences and journal.
He is coauthor in one book (Introduction to databases and Spreadsheets). He
collaborates with Technological Educational Institute of Chalkida, with Hel-

lenic Open University and he is the director of software company InfoWise. He teaches
courses, seminars and laboratories on software engineering, databases, operating systems and
computer architecture. His current research areas are internet and multimedia databases, mo-
bile databases, logic programming and distance learning.

Ioannis ALMALIOTIS received his B.Sc. in Mathematics from the De-
partment of Mathematics at the University of Crete, Greece in 1983 and his
M.Sc. in Computer Science from the Department of Computer Science at the
Greek Open University in 2008. Since 1996 he serves as the head of the
Network Operation Center at the Technological and Educational Institution
of Chalkis, Greece. He also works as a computer science lecturer in the Gen-

eral Department of Sciences at the same place. He has participated in many seminars and
workshops and his main research interests are in the area of wireless sensor networks, and al-
gorithmic analysis and Java programming.

http://www.w3.org/TR/REC-xml�
http://ruleml.org/�

