
Informatica Economică vol. 13, no. 1/2009 75

Guide to Good Practice in using Open Source Compilers
with the AGCC Lexical Analyzer

Rocsana BUCEA-MANEA-ŢONIŞ

 Academy of Economic Studies, Bucharest, Romania
imm.online@yahoo.com

Quality software always demands a compromise between users' needs and hardware re-
sources. To be faster means expensive devices like powerful processors and virtually unli-
mited amounts of RAM memory. Or you just need reengineering of the code in terms of adapt-
ing that piece of software to the client's hardware architecture. This is the purpose of optimiz-
ing code in order to get the utmost software performance from a program in certain given
conditions. There are tools for designing and writing the code but the ultimate tool for opti-
mizing remains the modest compiler, this often neglected software jewel the result of hun-
dreds working hours by the best specialists in the world. Even though, only two compilers ful-
fill the needs of professional developers, a proprietary solution from a giant in the IT indus-
try, and the Open source GNU compiler, for which we develop the AGCC lexical analyzer
that helps producing even more efficient software applications. It relies on the most popular
hacks and tricks used by professionals and discovered by the author who are proud to present
them further below.
Keywords: registers, dynamic linkage, cache, null pointers, tweaking.

Rules on the organization and naming
files and variables

Many standards provide rules in this regard
and a good example is the suffix .h of the file
name that contains the header or the defini-
tion of a class project in C/C++. Not even a
compiler directive or any rule of syntax does
mention this type of file so it is only a con-
vention matter. The files must structure to-
gether similar features. It will use a .h for
files that will contain the function declaration
or a class and extensions .c, .cs or .cpp for
different implementations. These files will
contain the default #include directive fol-
lowed by the file name and the appropriate
header and the following:
- comment which specifies the code author

and rights related to copyright;
- commentary indicates that the functionality

and destination file;
- definitions of local variables;
- interface prototypes for the class methods.
After [7], Hungarian notation is a rule in the
name of variables invented by Charles Si-
monyi at Microsoft. Hungarian notation ma-
jor advantage is that allows the name of va-
riables depending on the type of variable. It
is obviously that Hungarian notation does not

make sense in pure object oriented languages
since they will not use primitive but variable
object. In C++, a handler to a window can be
noted with hWnd, and a pointer to a numeric
value can be abbreviated pData, achieving an
economy of time and effort and keeping the
code as clean as possible. Often the interest
related to a variable is not the type, but the
scope (local, static, global or member) so that
MFC prefixes member variables with m_ and
with c_ the static ones. This technique could
be misleading when the variable type is
changed but the variable name remains the
same throughout the source code.
A well-documented software project may
help to understand the overall logic, the con-
struction and implementation of complex ap-
plications. We present below some relevant
documentation, after [6]:
d1. system specification - specify the major
objectives of the application requirements for
basic functionality and minimal configura-
tion. This information describes the general
and technical conditions to be met for opti-
mum operation of the application;
d2. software specification - describes in de-
tail the software and overall architecture of
the host system. They mentioned the type of

1

Informatica Economică vol. 13, no. 1/2009 76

processing, type of interfaces, logical
schemes of databases, etc. This specification
may also include possible changes to the
source code due to the evolution of technolo-
gy; we may use standard software specifica-
tion for performance measurement and ben-
chmarking other applications from the same
class;
d3. design specification - provides the gener-
al architecture of the application, variable
types and data structures, the interaction of
various modules; in the case of object
oriented software will be a description of the
main classes and methods; we may use this
specification to understand the code and oth-
er elements of its functionality;
d4. the results of testing the application -
containing information about the testing, the
technical conditions under which testing was
conducted and its outcome; based on these
data we can evaluate at least part of the ap-
plication functionality;
d5. the user's manual - includes a detailed
description of the functions of the applica-
tion, installation instructions and an overview
of the application. In most cases the manual
is the only type of documentation which will
access a potential customer, and it is very
useful especially in beta applications.

2. The degree of complexity of the com-
ment lines of code
Comments delimit distinct parts of the source
code from the function or purpose to be
achieved. To distinguish lines of code, some
may use special characters (-, *), either pro-
ceed to use different font color and style. The
detailed procedures shall be given in blocks,
providing information on:
- the algorithm used;
- the meaning of the variables;
- the sequences;
- the last update;
- the bibliographic source base;
- restrictions on the variables domains.
Commenting source code for programs writ-
ten in evolved programming languages, use
the pair / * ... * /, and for brief comments
from each of the programming instructions, it
is used digraph //... Grep command is used to

identify commented lines of code expression
by providing standard character as argument.

% grep “^[\t]** ”
% grep “^[\t]*\/\/”

Comments in Visual Basic code are em-
ployed introducing the '(apostrophe) in front
of sequence we want to comment. The apo-
strophe takes effect only in the line of code
that appears. An apostrophe inserted in a line
of code has the effect of commenting every-
thing following it until the end of the line.
Commented text will appear in the green la-
bel [1]:

‘member definition of Domiciliu Class
Option Explicit
Private m_Localitate, m_Judet, m_Strada
As String
‘***************** city

Public Property Get Localitate() As
String
Localitate = m_Localitate
End Property

Public Property Let Locali-
tate(n_Localitate As String)
m_Localitate = n_Localitate
End Property’******************** to
continue

A number of lines too small or too large may
be an indication that the program is more dif-
ficult to maintain or understand. It is prefera-
ble that a line of code does not end with a
comment, or to have so many lines as needed
to fit the comment in question. Exceptions
are expressions like #if/ #endif. For more de-
tailed comments is preferable to delimit
blocks of comments situation encountered
especially in functions. Bolded comments
will delimit separate parts of the source code
from the function or purpose to be achieved
[2]:

/*
|///////////////////////////////////////
///////////////////|
|///////////////| inLimite Class Tem-
plate |////////////////|
|///////////////////////////////////////
///////////////////|
*/
template <class T>
class inLimite{
 const T& min;

Informatica Economică vol. 13, no. 1/2009 77

 const T& max;
public:
 inLimite(const T& m, const T&
M):min(m), max(M){}
 bool operator() (const T& x){
 return x>min && x<max;
 }
};

Also, the comments at the end of line are ac-
ceptable when accompanying a variable dec-
laration and explaining its purpose. It is pre-
ferable that the majority of comments to ex-
plain Why and not How the code works, and
they are not written after drafting the code.

3. Standards and conventions used in edit-
ing the source code
A good practice in writing and debugging
code for optimal performance of the func-
tions includes after [3]:
- check the type of input parameters and re-

turned values of the functions;
- use a template to eliminate unwanted con-

versions between data types;
- constant definition with the const type fol-

lowed by the date type agreed;
- declaration of variables prior to use and re-

lease of memory space previously allocated
immediately after being used;

- use of parentheses whenever logic calcula-
tion is not very transparent;

- assert use when handle exceptions to pre-
vent errors;

- using an output parameter for the result and
return for error when a function must return
a calculated value and an error at the same
time;

- checking error values returned by functions
of the library system for those functions
that provide access to system resources,
such as malloc() or open();

- systematization of possible errors, based on
the critic level of them and their different
influence on the final results of the pro-
gram.

It is recommended to avoid:
• conversion between different types of data

and especially the conversion of a pointer
data type to void *;

• definition of data types derived from poin-
ters (ie: typedef char *

Sir_de_caractere) and preprocessing
constants with #define;

• introduce more in line instructions especial-
ly in alternative and repetitive structures;

• creating structures of more than 3 levels;
• invoking exit() inside a system library func-

tion;
• the use of goto, break or continue to exit

from a structure and repetitive post-
conditioned structures like do {...} while ();

• unsustainable use of global variables when
processing concurrent flows and macro lan-
guage.

It is recommended that radical changes to oc-
cur in the first phase of the development
cycle so that problems that may arise to be
solved, and adding the patches will be pro-
duced following a cost-benefit analysis. It
aims to maintain complementarities with the
standard C++ in the next version.

4. Optimizing code
The requirements of structured or object
oriented programming conflicts with the op-
timization software to increase speed of ex-
ecution. Even the modern hardware manages
hard to keep pace with the complex software
that requires grater space in memory and
higher processing speed. Open source
projects usually successful achieve the com-
promise between the limited hardware re-
sources and programs tailored to user needs
in respect of size and speed of execution.
The choice of programming language is a
compromise between efficiency, portability
and the development cycle. Preferred pro-
gramming language is C/C++ for the follow-
ing reasons:
- it is supported by modern compilers and

software libraries of optimized functions;
- C++ is a high level language with multiple

facilities;
- C allows access to system resources;
- most of the available C compilers outputs

the generated assembler code for making
new optimizations;

- accept inline assembler directives for higher
optimizations;

- it is portable on most hardware platforms.
Disadvantages of using C language are:

Informatica Economică vol. 13, no. 1/2009 78

- the need for separation of the graphical in-
terface from the main functionalities;

- the development cycle for a C/C++ is con-
siderably high;

- it has no tools for additional memory allo-
cation for the arrays, nor for the avoidance
of null pointers.

Before some work with the tweaking over the
source code it is necessary to analyze the
code with AGCC. The analysis may cover:
- how many times a routine is called;
- introduce break points to identify potential

errors;
- generate temporary interruption to test the

functionality of various components of the
program;

- how the interruption manager of CPU af-
fects the cache allocation by the program,
errors in the affected control structures or
exceptions in floating point calculations.

Inefficiency of a program C/C++ may be due
to:
- loading resources in memory may further

trigger the procedure for swapping to dy-
namic allocation of memory on the hard
disk;

- use dynamic linked libraries over static
loading leads to additional unnecessary
functions;

- prolonged spend in reading and writing
files;

- accessing a database in Windows can get a
few seconds;

- writing a graphic is done by allocating
small blocks of memory;

- the program bases on the resources accessi-
ble through a network;

- access to the RAM that exceeds the cache
level 2 can be 100 times more slowly;

- access to multithreading CPU is mutual
conditioned by the flows from different
stages of processing.

In [4] are detailed the main techniques of op-
timization programs in C/C++:
A. Methods of allocating space in memory
for variables
- using stacks by additional allocations in the

same area of memory, all variables must be
declared inside the function that is used;

- declare global variables involve using static

memory which is divided into three parts
one of which dedicated to constants, this
memory stays busy until the end of execu-
tion of the program;

- using the CPU registers to allow access to
data for 1-2 cycles amounts of time;

- dynamic allocation of memory using the
heap memory can become fragmented in
the allocations and reallocations of objects
with different sizes.

B. Using the pointer and references
- pointers can be used in arithmetic opera-

tions and can change the value of the object
they points to;

- the references cannot indicate an invalid
address;

- it is required to allocate an additional regis-
ter when using a pointer or reference.

C. Repetitive structures
- we recommend unrolling loops by a factor

greater or equal 2 when the disadvantage of
the cache congestion is justified by the eli-
mination of additional instructions or loops;

- a loop is more efficient with a control struc-
ture that tests an integer and the test value
does not result from internal structure of re-
petitive calculations;

- memset() and memcpy() can successfully
replace loops for initialization or copying a
row.

D. Calls to functions may slow down imple-
mentation of a program
- we recommend grouping instructions with

the same scope in the same function regard-
less of the number of lines;

- is preferably a reference to an object than a
function that returns the same object;

- a call to an inline function is replaced by
the compiler with the body of the function;

- definitions may substitute a macro function
but the parameters are evaluated every
time;

- the integer function parameters can be
called with __fastcall so that the first two
parameters are transferred in the register
and not stack;

- a static access modifier restricts functionali-
ty to the module that is part of.

Modern compilers operating a series of opti-
mizations independently by the developer

Informatica Economică vol. 13, no. 1/2009 79

which:
- replace expressions with their outcome;
- eliminating pointers by replacing them with

the pointed values;
- sending variables used more often in the re-

gistry;
- analysis the lifetime of variables so that

they can occupy the same register;
- merging identical instructions on the

branches of a control structure;
- the jump instructions can be replaced by the

instructions indicated by that jump;
- unrolling repetitive structures;
- remove outside loop instructions indepen-

dent from the counter;
- reordering instructions so as to facilitate pa-

rallel processing;
- mathematical reductions;
- the virtualization of member functions

through intelligent management of the code
without consulting the virtual table.

5. Using assembly language programs for
optimizing C/C++
Optimizing speed execution involves modifi-
cations on the intermediate file generated by
assembler compiler C++ accordingly to [5].
In general, compilers performance cannot
equal human developer writing code in opti-
mized assembler. Furthermore, one applica-
tion written in C appeals API routines to
generate Windows objects:

#include <windows.h>
#define BOPEN1 1
#define BSTAT1 2
void InitApp(HINSTANCE);
LRESULT APIENTRY MainProc(HWND,UINT,WPARAM,LPARAM);
HWND hwnd;
HWND bopen;
HWND bstat;
HINSTANCE g_hInst;
char *text;
int APIENTRY WinMain(HINSTANCE hInst,HINSTANCE hPrev,LPSTR line,int CmdShow)
{ MSG msg;
 g_hInst = hInst;
 InitApp(hInst);
 while(GetMessage(&msg,0,0,0))
 { TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return msg.wParam;
}
void InitApp(HINSTANCE hInst)
{ WNDCLASS wc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hbrBackground = (HBRUSH) GetStockObject(LTGRAY_BRUSH);
 wc.hInstance = hInst;
 wc.hCursor = LoadCursor(NULL,IDC_ARROW);
 wc.hIcon = LoadIcon(NULL,IDI_APPLICATION);
 wc.lpfnWndProc = (WNDPROC) MainProc;
 wc.lpszClassName = "Main";
 wc.lpszMenuName = NULL;
 wc.style = CS_HREDRAW | CS_VREDRAW;
 RegisterClass(&wc);
 hwnd = CreateWindow("Main","Simple Dialog", WS_OVERLAPPEDWINDOW, 50,
50, 150, 80,0,0,hInst,0);
 ShowWindow(hwnd,SW_SHOW);
 UpdateWindow(hwnd);
}

It is necessary to declare two types of han-
dlers, one of which addressed HWND win-
dow itself and the other type HINSTANCE,
refers to the Win type application. The main
routine is called WinMain and receives the

main argument handler application. In this
main function is declared a variable of type
MSG which keeps the user’s answers in the
form of messages and calls initialization pro-
cedure with the application handler. This

Informatica Economică vol. 13, no. 1/2009 80

procedure contains a reference type
WNDCLASS for its members initializations
and RegisterClass() method to register win-
dow. The window is displayed with the
ShowWindow() method and updated with
UpdateWindow() method, both with the
handler type argument to the window pre-

viously obtained with CreateWindow() me-
thod. Window behavior is dictated by the
LRESULT function with the main window
handler argument. The user’s messages are
handled in an alternative structure with mul-
tiple options (switch).

LRESULT APIENTRY MainProc(HWND hwnd,UINT msg,WPARAM wParam,LPARAM lParam)
{ switch(msg)
 {
 case WM_DESTROY: PostQuitMessage(0); break;
 case WM_CREATE:
 { SendMessage(hwnd,WM_SETICON,1,(LPARAM)LoadImage(NULL,
"eye.ico", IMAGE_ICON, 16, 16, LR_LOADFROMFILE));
 bopen = CreateWindow("BUTTON","OK",WS_CHILD | WS_VISIBLE |
BS_PUSHBUTTON,48,40,50,15,hwnd,(HMENU)BOPEN1,g_hInst,0);
 bstat = CreateWindow("STATIC","Simple Dialog Written In
C++",WS_CHILD | WS_VISIBLE,2,20,140,18,hwnd,(HMENU)BSTAT1,g_hInst,0);
 } break;
 case WM_COMMAND:
 { switch(HIWORD(wParam))
 {
 case BN_CLICKED:
 switch(LOWORD(wParam))
 {
 case BOPEN1:
 { ShowWindow(hwnd,SW_HIDE);
 UpdateWindow(hwnd);
 } break;
 } break;
 }
 } break;
 default: return DefWindowProc(hwnd,msg,wParam,lParam);
 }
 return 0;
}

The source code is compiled by the free Bor-
land C++ 5.5 utility with -S option to gener-
ate the assembler code properly. The result is
a modal window (Figure 1) with a Close but-
ton, a welcome text and an .ICO formatted

image in the title bar.
Generated assembler file contains 369 lines.
Some may decide to use the free assembler
editor MASM32 and compares simple.asm of
the template folder dialogs:

Fig. 1. Window generated by the simple.c program

 .486 ; create 32 bit code
 .model flat, stdcall ; 32 bit memory model
 option casemap :none ; case sensitive
 include \masm32\include\dialogs.inc
 include simple.inc
 dlgproc PROTO :DWORD,:DWORD,:DWORD,:DWORD
 .code
start:

Informatica Economică vol. 13, no. 1/2009 81

 mov hInstance, FUNC(GetModuleHandle,NULL)
 call main
 invoke ExitProcess,eax
main proc
 Dialog "Simple Dialog","MS Sans Serif",10, \ ; caption,font,pointsize
 WS_OVERLAPPED or WS_SYSMENU or DS_CENTER, \ ; style
 2, \ ; control count
 50,50,150,80, \ ; x y co-ordinates
 1024 ; memory buffer size
 DlgButton "&OK",WS_TABSTOP,48,40,50,15,IDCANCEL
 DlgStatic "Simple Dialog Written In MASM32",SS_CENTER,2,20,140,9,100
 CallModalDialog hInstance,0,dlgproc,NULL
 ret
main endp
dlgproc proc hWin:DWORD,uMsg:DWORD,wParam:DWORD,lParam:DWORD
 .if uMsg == WM_INITDIALOG
 invoke SendMessage,hWin,WM_SETICON,1,FUNC(LoadIcon,NULL,IDI_ASTERISK)
 .elseif uMsg == WM_COMMAND
 .if wParam == IDCANCEL
 jmp quit_dialog
 .endif
 .elseif uMsg == WM_CLOSE
 quit_dialog:
 invoke EndDialog,hWin,0
 .endif
 xor eax, eax
 ret
dlgproc endp
end start

Together with simple.inc file there are 227
lines of assembler code optimized, so a dif-
ference of 142 lines, with 38.5% fewer than
in the version of compiler code generated au-
tomatically. We conclude that optimizing the
code generated by compiler brings signifi-
cantly more efficient execution of programs
written in C/C++. We treated the previous
example by moving the lines of common
code in various functions outside their body,
get a global functionality of the instructions
and variables so the total length of the source
code is reducing from 240 lines of code to
188 lines of code, so an improved efficiency
in lines of code by over 21% .
In this way we avoid allocating space in
memory several times for the same object
and improve the overall readability of the
code. To compare the original code with the
optimized one we used the open source Win-
merge that ensuring data integrity by creating
back-ups for the optimized files.

6. AGCC, Graphviz and Cygwin compiler
case study
Graphviz package was designed to rely on
the UNIX like program-as-filter software pa-
radigm, in which distinct graph operations or

transformations are embodied as programs.
Graph drawing and manipulation are
achieved by using the output of one filter as
the input of another, with each filter under-
standing a common Sugiyama-style hierar-
chical layout [8].
AGCC analyzer uses the Graphvitz software
as a library with bindings in DOT language
to describe the graphs and attributes attached
as name-value pairs [9]. AGCC invokes the
Graphviz renderers generating a drawing of a
graph in a graphic format such as png:

gvRender (GVC_t *gvc, Agraph_t* g, char
*format, FILE *out);
gvRenderFilename (GVC_t *gvc, Agraph_t*
g, char *format, char *filename);

The first and second arguments are a Graph-
viz context handle and a pointer to the graph
to be rendered. The final argument gives a
file stream open for writing or the name of a
file to which the graph should be written. The
third argument names the renderer to be
used, such as "ps", "png" or "dot".
Libcgraph supports graph programming by
maintaining graphs in memory and reading
and writing graph files. Graphs are composed
of nodes, edges, and nested sub graphs.

Informatica Economică vol. 13, no. 1/2009 82

These graph objects may be attributed with
string name-value pairs and programmer-
defined records.

A program example adapted from Stephen
North from AT&T Research and used by
AGCC may be sketched like this:

#include "cgraph.h"
#include <stdio.h>
typedef struct mydata_s {Agrec_t hdr; int x,y,z;} mydata;
int main(int argc, char **argv)
{
 // Graphviz inner defined types for building a graph
 Agraph_t *g;
 Agnode_t *v;
 Agedge_t *e;
 // String attributes of nodes, edges and graphs identified by name and by an
internal symbol table entry created by Libcgraph
 Agsym_t *attr;
 Dict_t *d;
 // Contor for counting the graph edges
 int cnt;
 // Developer strucure for filling the graph in
 mydata *p;
 // Source file in .dot style
 FILE *fl;
 if (argc > 1)
 fl = fopen(argv[1], "r");
 else
 fl = stdin;
 if (g = agread(fl,NIL(Agdisc_t*))) { //Agdisc_t defines callbacks to be in-
voked by libcgraph when initializing, modifying, or finalizing graph objects
 cnt = 0; attr = 0;
 while (attr = agnxtattr(g, AGNODE, attr)) cnt++; // agnxtattr permits
traversing the list of attributes of a given type
 printf("The graph %s has %d \n",agnameof(g),cnt);
 /* Make the graph have a node color attribute, default is blue */
 attr = agattr(g,AGNODE,"color","blue"); // agattr creates or looks up
attributes
 /* Counts all the edges of the graph */
 cnt = 0;
 for (v = agfstnode(g); v; v = agnxtnode(g,v))
 for (e = agfstout(g,v); e; e = agnxtout(g,e))
 cnt++;
 /* attach records to edges */
 for (v = agfstnode(g); v; v = agnxtnode(g,v))
 for (e = agfstout(g,v); e; e = agnxtout(g,e)) {
 p = (mydata*) agbindrec(e,"mydata",sizeof(mydata),TRUE);
agbindrec attach records to individual objects one at a time
 }
 }
 return 0;
}

In order to build the program authors used
the Cygwin compiler that adapts GNU's GCC
compiler to Windows environment. The two
header files, cgraph.h and cdt.h must be also
present in the project.
The command line in order to compile the
original C file and create the object file is the
following:
g++ -c mygraph.c

The command line responsible with building
the binary file with two of the Graphitz Li-
braries is shown below:

g++ -o mygraph mygraph.o libcgraph.dll
libcdt.dll

It is recommended to create a new object and
copy the contents of an old one in order to
change or modify edges. A new object may
be created like this:
new_g = agopen("tmp",g->desc);

7. Conclusions
There are tools for designing and writing the
code but the ultimate tool for optimizing re-
mains the modest compiler, this often neg-
lected software jewel the result of hundreds

Informatica Economică vol. 13, no. 1/2009 83

working hours by the best specialists in the
world. Even though, only two compilers ful-
fill the needs of professional developers, a
proprietary solution from a giant in the IT in-
dustry, and the Open source GNU compiler,
for which we develop the AGCC lexical ana-
lyzer that helps producing even more effi-
cient software applications. It relies on the
most popular hacks and tricks used by pro-
fessionals and discovered by the author who
present them in this paper,

References
[1] R. Bucea-Manea-Ţoniş, R. Bucea-Manea-

Ţoniş - Integrarea aplicaţiilor Visual Ba-
sic cu SQLServer2000, AGIR, 2006

[2] R. Bucea-Manea-Ţoniş. Developing Ob-
ject Oriented Applications with C++ and
UML, AGIR, 2008.

[3] R. Bucea-Manea-Ţoniş “Open source in-
tegrated lexical analyzer for commented
code lines,” Revista Română de

Informatică şi Automatică, vol. 19, nr. 1,
2009

[4] A. Fog. Optimizing software in C++. An
optimization guide for Windows, Linux
and Mac platforms, Copenhagen
University College of Engineering, 2008

[5] R. K. Irvine. Assembly Language for In-
tel-based Computers, Prentice Hall, 2006

[6] D. Spinellis. Code Reading: The Open
Source Perspective, Addison-Wesley,
2003

[7] http://ootips.org/hungarian-notation.html
- Hungarian Notation - The Good, The
Bad and The Ugly

[8] K. Sugiyama, S. Tagawa, and M. Toda.
“Methods for Visual Understanding of
Hierarchical System Structures,” IEEE
Trans. Systems, Man and Cybernetics,
SMC-11(2):109–125, February 1981.

[9] R. E. Gansner (2007, August). Drawing
graphs with Graphviz, Available:
http://www.graphviz.org/

Rocsana TONIS (BUCEA-MANEA) is PhD student at The Academy of
Economic Studies, Bucharest, in the field of Accountings, specialization
Administration Informatics, having the PhD thesis - “Decision Support
System with Business Intelligence applications for Romanians’ SMEs”.
The competitiveness fields are: developing web sites
(http://csme.spiruharet.ro, http://immonline.ilive.ro/index.php), administer-
ing the data bases (Access, SqlServer2005, MySql), server scripting with

PHP, ASP and client scripting with JavaScript, statistical data analyses in the marketing re-
search using SPSS, Eview, Sphinx, implementing web marketing techniques on freeware and
open-source platforms.

