
Informatica Economică vol. 13, no. 1/2009

16

Security Issues of the Digital Certificates within Public Key Infrastructures

Cristian TOMA
Economic Informatics Department,

Academy of Economic Studies, Bucharest, Romania
cristian.toma@ie.ase.ro

The paper presents the basic byte level interpretation of an X.509 v3 digital certificate ac-
cording to ASN.1 DER/BER encoding. The reasons for byte level analysis are various and
important. For instance, a research paper has mentioned how a PKI security may be violated
by MD5 collision over information from the certificates. In order to develop further studies on
the topic a serious knowledge about certificate structure is necessary.
Keywords: digital certificates, certificates authority, ASN.1 DER/BER, PKI

ASN.1 – Abstract Syntax Notation 1
ASN.1 is a sort artificial language used

for describing data and data structure, instead
of programs. The syntax is standardized in
ISO/IEC 8824, and the coding rules are de-
fined by ISO/IEC 8825. Both of these stan-
dards were developed from Recommendation
X.409 of the CCITT. In order to get more in-
formation about ASN.1 it is recommended to
consult [1]. In ASN.1, an octet is an eight-bit
unsigned integer. Bit 8 of the octet is the
most significant and bit 1 is the least signifi-
cant.
The following meta-syntax and rules are used
for in describing ASN.1 notation:
 BIT – mono-space denotes literal charac-

ters in the type and value notation; in exam-
ples, it generally denotes an octet value in
hexadecimal
 n1 – bold italics denotes a variable
 [] – bold square brackets indicate that a

term is optional
 {} – bold braces group related terms
 | – bold vertical bar delimits alternatives

with a group
 … – bold ellipsis indicates repeated occur-

rences
 = – bold equals sign expresses terms as

sub-terms.
 Layout is not significant; multiple spaces

and line breaks can be considered as a single
space
 Identifiers (names of values and fields) and

type references (names of types) consist of
upper- and lower-case letters, digits, hy-
phens, and spaces; identifiers begin with
lower-case letters; type references begin with
upper-case letters. Comments are delimited
by pairs of hyphens (--), or a pair of hyphens
and a line break.
Some of the data types used in ASN.1 are
presented in the following listing:

Data Type Sort Tag Number Meaning

BOOLEAN Primitive 0x01 Boolean value: yes/no
INTEGER Primitive 0x02 Negative and positive integers
BIT STRING Primitive 0x03 Bit sequence
OCTET STRING Primitive 0x04 Byte sequence (1 byte=8 bits=1octet)
NULL Primitive 0x05 A null value
OBJECT IDEN-
TIFIER

Primitive 0x06 An object identifier, which is a sequence of integer com-
ponents that identify an object such as an algorithm or
attribute type

PrintableString Primitive 0x13 An arbitrary string of printable characters
T61String Primitive 0x14 An arbitrary string of T.61 (eight-bit) characters
IA5String Primitive 0x16 An arbitrary string of IA5 (ASCII) characters
UTCTime Primitive 0x17 A "coordinated universal time" or Greenwich Mean Time

(GMT) value

1

Informatica Economică vol. 13, no. 1/2009

17

Some of structured types defined in ASN.1 are presented in the following listing:

Data Type Sort Tag Num-
ber

Meaning

SEQUENCE Constructed 0x30 An ordered collection of one or more types
SEQUENCE OF Constructed 0x10 An ordered collection of zero or more occurrences of a giv-

en type
SET Constructed 0x31 An unordered collection of one or more types
SET OF Constructed 0x11 An unordered collection of zero or more occurrences of a

given type
A0, A1, … Constructed 0xAz Where z = 0..F in hex and it represents the z-th element in

SEQUENCE data type

The idea in ASN.1 is to prefix each data ob-
ject with a unique label and information
about its length. Users are allowed to define

their own data types and nested data objects.
A simple example of data type definition for
a controller using ASN.1 is:

SC_Controller ::= SEQUENCE { //Describe a new data type for a controller
 Name IA5String, //The name of the microchip is an ASCII string
 CPUType CPUPower, //CPUType refers to the definition of CPUPower
 NPU BOOLEAN, //yes or no if coprocessor is present
 EEPROMSize INTEGER, //the size in bytes of EEPROM
 RAMSize INTEGER, //the size in bytes of RAM used in smart card
 ROMSize INTEGER //the size in bytes of ROM used in smart card
}
CPUPower ::= ENUMERATED { //Definition of CPUPower as an enumeration
 8Bit (8), //Possible selection values for the CPUType
 16Bit (16),
 32Bit (32)
}

An example for a particular XSS microcontroller using previous definition in ASN.1 is de-
scribed in the following mode:

XSS SC_Controller ::= { //Specific instance-controller of SC_Controller
 Name “XS 8 Bit”, //The name of controller is XS 8 Bit
 CPUType 8, //this is an 8-bit CPU
 NPU true, //NPU present
 EEPROMSize 1024, //The size of EEPROM size is 1024 bytes
 RAMSize 256, //The size of RAM size is 256 bytes
 ROMSize 8192 //The size of ROM size is 8192 bytes
}

The BER – Basic Encoding Rules for
ASN.1 are defined in the ISO/IEC 8825
standard. A BER coded data object should
have:
 A label called T – tag

 A length field L
 The data content V - value

Figure 1 presents the BER-based TLV cod-
ing principle accordingly to ASN.1:

T - tag

1-2 bytes

L - length

1-3 bytes

V - value

n bytes
TLV Object

Fig. 1. ASN.1 BER-based TLV coding

A sample data for a particular microcontrol-
ler model is coded using the ASN.1 BER:
0x30 0x1C 0x16 0x08 0x58 0x53 0x20 0x38

0x20 0x42 0x69 0x74 0x0A 0x01 0x08 0x01
0x01 0xFF 0x02 0x02 0x04 0x00 0x02 0x02
0x01 0x00 0x02 0x02 0x20 0x00.

Informatica Economică vol. 13, no. 1/2009

18

When the author discuss about the start of a
sequence for an X509 v3 certificates, it
would be 0x30 0x82 0x01 0xC3 - SE-
QUENCE {…} – this means the certificate is
a SEQUENCE structure (first byte with 0x30
value) with 451 bytes. The length is specified
in 3 bytes 0x82 0x01 0xC3. The last hex digit
(nibble = half-byte) from the first byte of the
length field specifies the length in bytes of
the structure => 2 bytes. The next 2 bytes ac-
tually express the length of the structure SE-
QUENCE, and they have the value 0x01C3
=> 451 bytes.
The BER special encoding applies to the
OID-s – Object Identifiers - in Internet.
In the figure 2 there is some of the ISO tree
hierarchy for constructing objects in Internet
structure. It is useful to imagine how would
be written the OID with value
1.2.840.113549.1.1.5 ({iso(1) member-
body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-1(1) sha1-with-rsa-signature(5)}) for
signature obtained from SHA-1 digest on the
message and RSA algorithm applied to the
digest. This encoding will be at byte level:
0x06 0x09 0x2A 0x86 0x48 0x86 0xF7 0x0D
0x01 0x01 0x05. The first byte shows that
here there is an OID – OBJECT IDENTIFI-
ER field. The OID has 9 bytes length because
of second byte in array. Because the first bit
in length field is not set the length field has
only one byte. The length field has value 9
which means the OID structure has the payl-
oad data in 9 bytes.
According to BER, the first two numbers of
any OID (x.y) are encoded as one value using

the formula (40*x)+y. The first two numbers
in an OID are here 1.2. Therefore, the first
two numbers of an OID are encoded as 42 or
0x2A, because (40*1)+2 = 42. After the first
two numbers are encoded, the subsequent
numbers in the OID are each encoded as a
byte. However, a special rule is required for
large numbers because one byte (eight bits)
can only represent a number from 0-255.
This is the case for 840 and 113549. For 840
from the OID, the first bit of the first byte
should be set. The number occupies enough
number of bytes till the last byte of represen-
tation is not having the first bit set. In 840
case 0x48 has the first bit NOT set. So, the
formula is the last hex digit from the first
byte multiplied with 2^7 = 128 (1 bit is for
multiple bytes representation) and added with
the value from the second byte as long as the
second byte has a value less than 0x80. In
840 case, the formula is: 0x06*128 + 0x48
(form 0x86 0x48)= 768 + 72 = 840. In case
of 113549 we choose the bytes 0x86 0xF7
0x0D because 0x0D is the last byte with first
bit (sign bit) not set. The formula for 113549
is:

0x06*2^14 + 0x77*2^7 + 0x0d*2^0 =
6*16384 + 119*128 + 13*1 = 98304 + 15232
+ 13 = 113549.

For the remaining encoding {…pkcs(1) pkcs-
1(1) sha1-with-rsa-signature(5)}, we will
have only one byte for each number: 0x01
0x01 0x05.

’30 1C’ //Tag 0x30 for a array with a length of 28
 //bytes (0x1C)
’16 08 58 53 20 38 20 42 69 74’ //Tag 0x16 for an IA5String with a length of
 //8 bytes (0x08) with a content of “XS 8 Bit”
‘0A 01 08’ //Tag 0x0A for an enumerated data type with
 //a length of 1 byte (0x01) and a content of 8
’01 01 FF’ //Tag 0x01 for Boolean data type with a length of 1 byte (0x01)
 //and a content of 0xFF (true)
’02 02 04 00’ //Tag 0x02 for an integer data type with a length of 2 bytes
 //(0x02) and of 1024 bytes (0x0400)
’02 02 01 00’ //Tag 0x02 for an integer data type with a length of 2 bytes
 //(0x02) and of 256 bytes (0x0100)
’02 02 20 00’ //Tag 0x02 for an integer data type with a length of 2 bytes
 //(0x02) and of 8192 bytes (0x0200)

Informatica Economică vol. 13, no. 1/2009

19

Fig. 2. ISO tree hierarchy for constructing objects in Internet structure

For checking out an OID, please visit [3].
The DER – Distinguished Encoding Rules
form a subset of the BER and give exactly
one way to represent any ASN.1 value as an
octet string. DER is intended for applications
in which a unique octet string encoding is
needed, as is the case when a digital signa-

ture is computed on an ASN.1 value. A basic
summary of the BER and DER are found in
Burton Kaliski [1].
The two most significant bits of the bytes T –
tag encode the class of the data object. The
bits positions are presented in figure 3:

 T - tag

b7 b6 b5 b4 b3 b2 b1 b0

L - length

Meaning

 0 0 … … … … … …
 0 1 … … … … … …
 1 0 … … … … … …
 1 1 … … … … … …
 ... … 0 … … … … …
 ... … 1 … … … … …
 ... … … Y Y Y Y Y
 ... … … 1 1 1 1 1

 Universal class
 Application class
 Context-specific class
 Private class
 Primitive data object
 Constructed data obj.
 Tag code (0-30)
 Pointer to the following
 byte (byte 2), which
 specifies the tag code

b7 b6 b5 b4 b3 b2 b1 b0

 0 … … … … … … …

 The value of tag code in
 range 31-127

Byte 1 Byte 2

Meaning

 One byte is needed
 Two bytes are needed
 Three bytes are
 needed

 0 - 127 … …
 0x81 128-255
 0x82 256-65535

Byte 1 Byte 2 Byte 3

Byte 3,4,5

Fig. 3. Structure of T and L fields in ASN.1 [5]

In figure 3, the universal class indicates gen-
eral data objects such as integers and charac-
ter strings. The application class indicates
that the data object belongs to a particular
(e.g. electronic wallet from a smart card) or
standard (e.g. ISO/IEC 7816-6) application.

The classes context-specific and private are
not matter of standard applications. The bit
following the first two bits indicates if the tag
is for a primitive or constructed data object.
The five least significant bits from byte 1 are
the actual label, the tag value. If the tag value

Informatica Economică vol. 13, no. 1/2009

20

is greater then 30, then all the bits from first
byte have value 1 and the bits b0-b6 from
second byte store a value between 31-127
ranges. The byte 3, 4 and 5 are used for
marking the data length. If data has a byte
length less than 127 then only the byte 3
(first byte from L) is used to store the actual
length. If the length value is between128-

255, then 2 bytes are used for storing the
length and if the length is between 256 and
65535, then all three bytes from L field are
used for storing the length value.
Figure 4 presents a sample about how the
first name of a person can be stored in a
smart-card.

 Tag Length Value

0x85 0x05 0x46 0x72 0x61 0x6E 0x6B

Tag for first
names

Length of the
first name

First name “Frank” in ASCII

Fig. 4. TLV Encoding for the first name “Frank” [5]

Subsequent extensions to data structures can
be undertaken very easily with ASN.1 since
all that is necessary is to insert additional
TLV-coded data objects into existing data
structure. Full compatibility with the pre-
vious versions is retained as long as the pre-
vious TLV objects are not deleted. The same
is true of new version of data structures in

which changes have been made accordingly
to the previous coding. This kind of encoding
is used on the large scale in smart card indus-
try. Figure 5 presents a basic scheme for
forming constructed TLV-coded data struc-
tures from several primitive TLV-coded data
objects.

Tc Lc Vc

Tp1

Tag for
constructed
data object

Length of the
constructed
data object

Value of the
constructed
data object

Tp2 Tp3 Lp1 Vp1 Lp2 Vp2 Lp3 Vp3

Fig. 5. Nested TLV-coded data objects [5]

The indices ‘C’ and ‘P’ stand for ‘con-
structed’ and ‘primitive’ in figure 5. This
kind of coding has the advantage of no mat-
ter order have the TLV-coding structures the
programs could be able to interpret them cor-
rect. When evaluating the TLV-coding data
structure, the program compares the first tag
with all tags known to it. If it finds a match,
then it recognizes the first object from byte
array, and it is able to “say” how long it is.

2. Digital Certificates and Certification
Authorities
The infrastructures based on the cryptogra-
phy with asymmetric (public) keys are essen-
tial for the viability of the message transac-
tions and communications especially in net-
works and generally on the Internet. The PKI
– Public Key Infrastructure consists of the

multitude of services required to be ensured
when the technologies of encryption with
public keys are used on a large scale. These
services are of technological nature, as well
as legal, and their existence is necessary in
order to permit the exploitation of public
keys technologies at their full capacity.
The main elements of the public keys infra-
structures are:
 Digital certificates
 Certification Authorities (CA)
 Management facilities (protocols) for cer-

tificates
The public keys infrastructures must ensure
support for encryption functions, as well as
for those for digital signature.
In the functioning of public keys systems is
necessary a system for generating, circulating
and certifying the users’ keys. Given a user C

Informatica Economică vol. 13, no. 1/2009

21

who intents to pose as A, and wants to fake
sign as. Faker C may easily do that, generat-
ing his own pair of keys and placing the pub-

lic one in the public folder, instead of the real
one of A (instead of the public key of A).

Digital Certificate

Version

Serial Number
Crypto Algorithm for signature

The CA name that has issued the crtificate
Validity Period
Subject Name

Subject Public Key
ID unique of CA issue (optional)
ID unique of subject (optional)

Extensions (optional)

Digital signature of Certificate
Authority

Type extension Critical/NonCritical Extenstion Value
Type extension Critical/NonCritical Extenstion Value

Type extension Critical/NonCritical Extenstion Value

Private Key of CA

Generate
Digital

Signature

Fig. 6. X509 v3 Certificate

The documents and messages signed by C
with his secret key will be verified with the
public key that seems to be of A and any per-
son will be deceived the authenticity of the
messages signed on behalf of A. The main
problem is thus of the total trust in public
keys, those used for certifying the digital sig-
natures. These (signatures) must be available
on the network, so that any client may get the
public key of a sender of a signed message.
So, the technical solution exists: creating an
international infrastructure, based on Certifi-
cation Authorities – CA, that may allow the
easy access and in a secure mode to the pub-
lic keys of the entities that wish to communi-
cate in the network or Internet. These author-
ities will distribute, by request, certificates of
authentic keys. The most largely known and
used format for digital certificates of public
keys is that defined in the standard X.509 by
ISO/IEC/ITU. The format X.509 for certifi-
cates has evolved in three versions. Version 3
(adopted in 1996) is the best known. Figure 6
illustrates the format of the certificate X.509
v3.
While the previous versions ensured support
only for the name system X.500, X.509 v3

accepts a large variety of forms for names,
including e-mail addresses and URLs.
A system based on public keys certificates
presumes the existence of a Certification Au-
thority, which issues certificates for a certain
group of owners of keys pairs (public and
private). Each certificate includes the value
of the public key and information that uni-
quely identifies. The certificate’s subject
(who is a private person or a company, an
application, a device or another entity that
holds the secret key correspondent to the
public key included in the certificate). The
certificate represents a liaison impossible to
falsify, between a public key and a certain
attribute of its owner. The certificate is digi-
tally signed by a Certification Authority (cer-
tified by the government), that so confirms
the subject’s identity. Once the certificates
set established, an user of that public key in-
frastructure (PKI) may obtain the public key
for any user certified by that Certification
Authority, simply getting the certificate for
that user extracting from it the desired public
key. The ASN.1 representation of an
X509.v3 certificate is the following:

Informatica Economică vol. 13, no. 1/2009

22

In figure 7 is represented an X 509 v3 cer-
tificate in hex editor and in Windows

Crypto Shell program.

Fig. 7. X509 v3 Certificate in Hex and in MS Crypto Shell

So the interpretation of the results for a Self Signed X509 V3 Certificate in ASN.1

Certificate ::= SIGNED { SEQUENCE {
version [0] Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueIdentifier [1] IMPLICIT UniqueIdentifier OPTIONAL,
-- if present, version shall be v2 or v3
subjectUniqueIdentifier [2] IMPLICIT UniqueIdentifier OPTIONAL,
-- if present, version shall be v2 or v3
extensions [3] Extensions OPTIONAL
-- If present, version shall be v3 -- } }
Version ::= INTEGER { v1(0), v2(1), v3(2) }
CertificateSerialNumber ::= INTEGER
AlgorithmIdentifier ::= SEQUENCE {
algorithm ALGORITHM.&id ({SupportedAlgorithms}),
parameters ALGORITHM.&Type ({SupportedAlgorithms}{ @algorithm}) OPTIONAL }
-- Definition of the following information object set is deferred, perhaps to standardized
-- profiles or to protocol implementation conformance statements. The set is required to
-- specify a table constraint on the parameters component of AlgorithmIdentifier.
-- SupportedAlgorithms ALGORITHM ::= { ... }
Validity ::= SEQUENCE {
notBefore Time,
notAfter Time }
SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }
Time ::= CHOICE {
utcTime UTCTime,
generalizedTime GeneralizedTime }
Extensions ::= SEQUENCE OF Extension
Extension ::= SEQUENCE {
extnId EXTENSION.&id ({ExtensionSet}),
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
-- contains a DER encoding of a value of type &ExtnType
-- for the extension object identified by extnId -- }
ExtensionSet EXTENSION ::= { ... }

Informatica Economică vol. 13, no. 1/2009

23

BER is in the following listing [4]:

Tag Length Value ASN 1 Notation Comments
30 82 01 C3 SEQUENCE {

Byte with value 0x30 is ASN 1 header, complex
sequence, the the last digit from the first byte of
the length bytes specifies the length in bytes of
the structure => 2 bytes with 01C3 value => 451
bytes

30 82 01 2C SEQUENCE {

ASN Complex Sequence Header with 300 bytes
length, to be signed parts begin here

A0 03 [0] {

ASN 1 DER Encoding for first element from the
SEQUENCE, has 3 bytes length. Tag 0x0A for
an enumerated data type with a length of 3 bytes
(0x03) and a content 0x02 0x01 0x02

02 01 02 INTEGER 2
}

Attribute version, 1 byte length with value 2 =>
X 509 version 3 (starting from 0)

02 04 46 8B 83 64 INTEGER 1183548260

Attribute Serial Number with the value
1183548260

30 0D SEQUENCE { Another sequence within first two sequences al-
ready opened and has 13 bytes length

06 09 2a 86 48 86 f7 0d 01
01 05

OBJECT IDENTIFIER
rsaWithSha1
(1 2 840 113549 1 1 5)

Signature algorithm identifier - sha1RSA = sha-
1WithRSAEncryption OBJECT IDENTIFIER
::= {iso(1) member-body(2) us(840) rsad-
si(113549) pkcs(1) pkcs-1(1) sha1-with-rsa-
signature(5)}
For 840 from the OID the formula is
0x06*128 + 0x48 (form 0x86 0x48)= 768 + 72
= 840
0x06*2^14 + 0x77*2^7 + 0x0d*2^0 = 6*16384
+ 119*128 + 13*1 = 98304 + 15232 + 13 =
113549

05 00 NULL
}

Element NULL in ASN.1 BER with 0 bytes
length. So, NULL 2 bytes and the SEQUENCE
is ending.

30 26 SEQUENCE { Another sequence within first three sequences
already opened and has 38 bytes length (0x26)

31 0B SET { A SET with 12 bytes length
30 09 SEQUENCE {
06 03 55 04 06 OBJECT IDENTIFIER

countryName (2 5 4 6)
OID countryName {joint-iso-itu-t(2) ds(5) attri-
buteType(4) countryName(6)}

13 02 52 4F PrintableString 'RO' countryName = 'RO' Printable string with 2
bytes length for issuer

 }
}

Closed the SET and the SEQUENCE

31 17 SET { A SET with 23 bytes length
30 15 SEQUENCE { Another sequence within first three sequences

already opened and has 21 bytes length (0x15)
06 03 55 04 03 OBJECT IDENTIFIER

commonName (2 5 4 3)
OID commonName {joint-iso-itu-t(2) ds(5) at-
tributeType(4) commonName(3)}

13 0E 4F 52 41 4E 47 45 20
52 6f 6d 61 6e 69 61

PrintableString
'ORANGE Romania'

commonName = 'ORANGE Romania' for issuer
Printable String with 14 bytes length

 }
 }
}

Closed the SET and the SEQUENCE and the
first above SEQUENCE – the one with 38 bytes
length (0x26) for issuer

30 1E SEQUENCE { Another sequence within first sequence already
opened and has 30 bytes length (0x15)

17 0D 30 37 30 37 30 34 31
31 32 34 32 30 5a

UTCTime
'070704112420Z'

A "coordinated universal time" or Greenwich
Mean Time (GMT) value, for valid from
YYMMDDHHmmSS format, meaning 04 July
2007 11:24:20

17 0D 30 37 31 30 30 32 31
31 32 34 32 30 5a

UTCTime
'071002112420Z'

A "coordinated universal time" or Greenwich
Mean Time (GMT) value, for valid to
YYMMDDHHmmSS format, meaning 02 Oc-
tober 2007 11:24:20

 } Closed the SEQUENCE with 0x1E length

Informatica Economică vol. 13, no. 1/2009

24

30 26 SEQUENCE { Another sequence within first sequence already
opened and has 38 bytes length (0x26)

31 0B SET { A SET with 11 bytes length
30 09 SEQUENCE { Another sequence within first two sequences

and one set already opened and has 09 bytes
length

06 03 55 04 06 OBJECT IDENTIFIER
countryName (2 5 4 6)

OID countryName {joint-iso-itu-t(2) ds(5) attri-
buteType(4) countryName(6)}

13 02 52 4F PrintableString 'RO' countryName = 'RO' Printable string with 2
bytes length for subject

 }
}

End of SEQUENCE and SET

31 17 SET { A SET with 23 bytes length
30 15 SEQUENCE { Another sequence within first three sequences

already opened and has 21 bytes length (0x15)
06 03 55 04 03 OBJECT IDENTIFIER

commonName (2 5 4 3)
OID commonName {joint-iso-itu-t(2) ds(5) at-
tributeType(4) commonName(3)}

13 0E 4F 52 41 4E 47 45 20
52 6f 6d 61 6e 69 61

PrintableString
'ORANGE Romania'

commonName = 'ORANGE Romania', for sub-
ject Printable String with 14 bytes length

 }
 }
}

Closed the SET and the SEQUENCE and the
first above SEQUENCE – the one with 38 bytes
length (0x26) for subject

30 81 9F SEQUENCE { Another sequence within first sequence already
opened and has 159 bytes length (0x9F)

30 0D SEQUENCE { Another sequence within first two sequences al-
ready opened and has 13 bytes length

06 09 2a 86 48 86 F7 0D 01
01 01

OBJECT IDENTIFIER
rsaEncryption
(1 2 840 113549 1 1 1)

OBJECT IDENTIFIER rsaEncryption ::=
{iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-1(1) rsaEncryption(1)}

05 00 NULL
}

Element NULL in ASN.1 BER with 0 bytes
length. So, NULL 2 bytes and the SEQUENCE
is ending.

03 81 8D 00 30 81 89 02 81 81
00 b6 31 f8 3c cf 87
50 8b 30 48 95 65 81
2b 64 03 21 c4 43 4d
a7 f9 eb 4b 67 ff e7 ec
65 76 4b bd ca d4 43
5d a6 92 d5 86 9d 4e
0b 4c cb 5b 08 33 41
9a 62 2f 7e 26 13 95
58 f2 01 9a 67 33 3e
d1 c5 af 6f 89 6e e5
54 0b 2e f9 95 24 7d
4f 1c 31 ac b6 bd fe
45 2b da f9 21 ec 9d
42 9f 5f 62 2e c4 51
36 7e 00 59 eb b4 04
91 7f c4 f5 4c 2f bf 6a
8f 94 62 9d a5 20 4d
2f c0 2e a2 02 ed c5 ef
02 03 01 00 01

BIT STRING 0 unused
bits, encapsulates {

BIT STRING with 141 bytes length for RSA
Public Key. The second byte is the sequence
(0x30), the third and fourth byte are the length
of RSA public key, 0x0189. The fith byte speci-
fies an INTEGER of 0x181 bytes length. This is
the length of the RSA modulus. After RSA
modulus, comes the RSA public exponent. In
this case, the RSA public exponent is 0x01 0x01
0x01 (the last 3 bytes).

 } End BIT STRING
30 0D SEQUENCE { Another sequence within first two sequences al-

ready opened and has 13 bytes length
06 09 2a 86 48 86 f7 0d 01

01 05
OBJECT IDENTIFIER
rsaWithSha1
(1 2 840 113549 1 1 5)

Signature algorithm identifier - sha1RSA = sha-
1WithRSAEncryption OBJECT IDENTIFIER
::= {iso(1) member-body(2) us(840) rsad-
si(113549) pkcs(1) pkcs-1(1) sha1-with-rsa-
signature(5)}

05 00 NULL
}

Element NULL in ASN.1 BER with 0 bytes
length. So, NULL 2 bytes and the SEQUENCE
is ending.

03 81 81 00 08 d5 29 b4 97 e0
cf 6b fd bf f0 00 ce b3

BIT STRING 0 unused
bits, encapsulates {

BIT STRING with 129 bytes length - 1024 bits -
for digital signature of Certificates Authority.

Informatica Economică vol. 13, no. 1/2009

25

89 3c 7a 7c f2 95 23
1c a2 56 ca 09 04 b6
74 d3 f5 84 15 ff cc 03
1e 2a b4 69 ac 83 42
03 c7 b6 d1 a0 e1 51
8c eb a1 3f 32 53 89
ee 5b ae 72 6e a6 16
ac 88 77 38 23 cb bc
8e 15 7f 36 4f 8c 92
4d e9 53 96 0b 08 c9
cd 92 fd 46 fc 9e 05
11 bd ba cb 6f 30 53
e8 94 48 45 84 68 c8
ba c1 57 89 75 a1 32
f2 35 01 1b e7 17 87
9c b7 6d 8b eb af 7a
9a

This certificate is self signed and the signature is
generated with itself private key. In this case all
the previous fields from the certificate has been
concatenated and signed with the private key
and can be verified with itself public key.

 }
 }
}

End BIT STRING
End SEQUENCE with 0x81 0x9F length
End SEQUENCE with 82 0x01 0xC3 length

So, from the previous table it is obvious the
following for the X509 v3 self signed certifi-
cate:
 the serial number is 1183548260 (0x46

0x8B 0x83 0x64 hex);
 the certificate is signed with RSA over the

SHA-1 hash algorithm;
 the issuer's distinguished name is CN =

ORANGE Romania; C = RO;
 the subject's distinguished name is CN =

ORANGE Romania; C = RO;
 the issuer and the subject are the same, so

the certificate is self signed;
 the certificate was issued on July 04, 2007

11:24:20 and will expire on October 02, 2007
11:24:20;
 the certificate contains a 1024 bit RSA

public key;
 the certificate contains the signature of all

the fields in last section
The obtained ASN.1 Notation for the certifi-
cate from the previous listing of the self
signed certificate is [4]:

SEQUENCE {
 SEQUENCE {
 [0] {
 INTEGER 2
 }
 INTEGER 1183548260
 SEQUENCE {
 OBJECT IDENTIFIER
 rsaWithSha1(1.2.840.113549.1.1.5)
 NULL
 }
 SEQUENCE {
 SET {
 SEQUENCE {

 OBJECT IDENTIFIER countryName (2.5.4.6)
 PrintableString ‘RO’
 }
 }
 SET {
 SEQUENCE {
 OBJECT IDENTIFIER commonName (2.5.4.3)
 PrintableString ‘ORANGE Romania’
 }
 }
 }
 SEQUENCE {
 UTCTime ‘070704112420Z’
 UTCTime ‘071002112420Z’
 }
 SEQUENCE {
 SET {
 SEQUENCE {
 OBJECT IDENTIFIER countryName (2.5.4.6)
 PrintableString ‘RO’
 }
 }
 SET {
 SEQUENCE {
 OBJECT IDENTIFIER commonName (2.5.4.3)
 PrintableString ‘ORANGE Romania’
 }
 }
 }
 SEQUENCE {
 SEQUENCE {
 OBJECT IDENTIFIER rsaEncryption (1.2.840.11354
 9.1.1.1)
 NULL
 }
 BIT STRING 0 unused bits, encapsulates { //public
 key}
 SEQUENCE {
 OBJECT IDENTIFIER rsaWithSha1 (1.2.840.113549
 .1.1.5)
 NULL
 }
 BIT STRING 0 unused bits, encapsulates { //signat
 ure}
 }
}

Informatica Economică vol. 13, no. 1/2009

26

The systems for obtaining public keys based
on certificates are simple and cheap to im-
plement, due to an important characteristic of
the digital certificates: the certificates may be
distributed without requiring protection
through the average security systems (certifi-
cation, integrity and confidentiality). This
because the public key should not be kept se-
cret; thus, the digital certificate that includes
it is not secret. There are no requirements for
certification or integrity, because the certifi-
cate self-protects (the digital signature of AC
in the certificate ensures its certification, as
well as its integrity).
Consequently, the digital certificates may be
distributed and moved by unsecured commu-
nication liaisons: by unsecured file servers,
by systems of unsecured folders and/or
communication protocols that do not endure
the security.

3. Protocols for Certificates Management
The interaction between the components of a
public key infrastructure requires the exis-
tence of some protocols for the certificates
management. The elements involved in the
PKI management are:
 the subject of a certificate, that may be a

person or an application and represents the
final entity (EE – End Entity);
 Certification Authority – CA, that starts a

digital certificate, coupling the identity of an
user with his public key and certifies this as-
sociation;
 AI (Registration Authority – RA) – certifi-

cation of the persons, name deliverance key
generation.
The protocols between the mentioned above
are used for the following scopes:
 Establishing CA: when a new CA is estab-

lished, there must be taken certain steps, such
as generating the initial list of revoked certif-
icates or the export of the CA’s public key.
 Initializing the final entity: involves obtain-

ing the public key of the root CA and the in-
formation request about the PKI management
at the level of the final entity
 Certification:

 Initial registration/certification – when
an end entity becomes known to a Certifi-

cation Authority (CA). After this process
CA generates one or more certificates for
that end entity.

 Establishing a pair of keys – it is neces-
sary that each pair of keys to be regularly
changed and a new certificate to be issued.

 Updating a certificate – when a certifi-
cate expires, it must be update.

 Changing the CA’s pair of keys.
 Request for crossed certificates – when

a certification authority certifies another
certification authority.

 Updating some crossed certificates
 Publishing of a certificate or list of revoked

certificates: involves storing a certificate or a
list of revoked certificates where everybody
may have access (for instance such a protocol
is LDAP).
 Restoration of a pair of keys: when an end

entity loses its private key and wishes resto-
ration, if previously RA or CA saved this
key.
 Revoking a certificate: when an end entity

wishes to revoke (cancel) a certificate, opera-
tion that involves a revocation demand and
implicitly the update of the list of revoked
certificates (CRL – Certificate Revocation
Lists).
It is not necessary that these operations
should be executed on-line, also existing off-
line methods for their fulfillment. It is im-
possible to find a Certification Authority
which to issue certificates for all the owners
of pairs of public/ private keys in the world,
because it is not practical that all the users in
the world trust a single organization or com-
pany in what concerns their secret communi-
cations. That is why is accepted the idea of
the multiple Certification Authorities. More-
over, a single user can have certificates is-
sued by different CAs, for different types of
secure communications he wants to establish.
As well, practically it is not possible to pre-
sume that a users of the public key infrastruc-
ture (PKI) already holds the public key of a
certain certification authority, CA1, which is-
sued a certificate for an entity with whom
that user wants to secure communicate. Al-
though, in order to obtain the public key of
that CA1, the user may use another certifi-

Informatica Economică vol. 13, no. 1/2009

27

cate, i.e. a certificate issued for that CA1 by
another certification authority, CA2, whose
public key is hold in a secure way by the us-
er. So, the procedure is recursively applied
and a user may obtain the public keys for a
constantly larger number of Certification Au-
thorities and, correspondingly, the public

keys for a constantly larger number of other
users. This leads to a general pattern, called
certification chain of certification path, on
which are based all the main present systems
for public keys distribution.
The model of building the certification chain
is reproduced in figure 8.

Digital Certificate 1

Digital Certificate 2

User X

Subject=AC2

Public key of AC2

Issuer=Certificate
Authority AC1

Subject=AC3

Public key of AC3

Issuer=Certificate
Authority AC2

Digital Certificate 3
Subject=User Y

Public key of Y

Issuer=Certificate
Authority AC3

User X obtains the public key of Y using a
certification chain. X knows where to find
the digital certificate1 and starting with it,

find out the public key of Y.

Fig. 8. Certification Chain

Fig. 9. Digital Signature involving Digital Certificates

The certification is so absolutely necessary in
an infrastructure based on cryptography with
public keys. But together with this come
problems that must be solved, such as: certif-
icate acquisition, its recognition, revocation,

distribution and validation. The description
of a standard digital signature that involves
public certificates is presented in figure 9.
In figure 9 the sender A hashes the original
message M. The digest is sent into the smart

Informatica Economică vol. 13, no. 1/2009

28

card that process RSA with the private key
stored in secure manner on the smart card.
After the smart card processing the signature
is attached to the original message using
PKCS. The message with signature arrives to
the receiver B. The receiver B gets the public
key of A using a certification chain from the
certificates stored on CA’s servers. The pub-
lic key of A and the signature are the inputs
for RSA algorithm and it is obtained the di-
gest H2. The original message is hashed with
a dispersion function (MD5 or SHA-1) and it
is obtained H1. If H1 is the same as H2 then
the signature is valid.

4. Conclusions
The study is important because it seems poss-
ible to have different certificates with the
same signature value – last field in ASN.1
sequence of a certificate. More information
about collisions is in [2]. They “announce a
method for the construction of pairs of valid
X.509 certificates in which the ‘to be signed’
parts form a collision for the MD5 hash func-
tion. As a result the issuer signatures in the
certificates will be the same when the issuer
uses MD5 as its hash function”. Also, they

show “that MD5 collisions can be crafted
easily in such a way that the principles
derlying the trust in Public Key Infrastructure
are violated”. There is in research how a
tificate trust may be violated by the exploited
of MD5 collision over digital certificates.
That’s why it is important to analysis at byte
level of ASN.1 DER/BER encoding of the
certificates and their implications in the
lic key infrastructures.

References
[1] B. Kaliski Jr. A Layman's Guide to a

Subset of ASN.1, BER, and DER, RSA
Publishing House, USA 1993.

[2] A. Lenstra, X. Wang, and B. de Weger
Colliding X.509 Certificates,
http://www.win.tue.nl/~bdeweger/Collidi
ngCertificates/

[3] http://www.oid-info.com/ cgi-bin/display
[4] C. Toma. Security in Software Distri-

buted Platforms, AES Publishing House,
Bucharest, 2008.

[5] W. Rankl and Effing. Smart Card Hand-
book 3rd Edition, John Wiley & Sons
Publishing House, USA 2004, reprinted
2007.

Cristian TOMA has graduated from the Faculty of Economic Cybernetics,
Statistics and Informatics, Economic Informatics specialization, within
Academy of Economic Studies Bucharest in 2003. He has graduated from
the BRIE master program in 2005 and PhD stage in 2008. In present, he is
assistant lecturer at Economic Informatics Department and he is involved
in IT&C Security master program. His research areas are in: distributed
and parallel computing, mobile applications, smart card programming, e-
business and e-payment systems, network security, computer anti-viruses

and viruses, secure web technologies and computational cryptography. He is teaching assem-
bly language, object oriented programming, data structures, distributed applications develop-
ment and advanced programming languages in Economic Informatics Department and he has
published 2 books and over 30 papers in indexed reviews and conferences proceedings.

