
Revista Informatica Economică, nr.3(47) 2008 147

Testing Java ME Applications

Paul POCATILU
Economy Informatics Department, Academy of Economic Studies, Bucharest, România

Today, mobile applications have a wide use and their development is growing fast.
Testing mobile applications is an important aspect of their development, keeping in mind the
importance of these applications and their specific characteristics. In this paper are shown
the main aspects of testing the mobile applications, focusing on unit testing of Java ME appli-
cations.
Keywords: mobile applications, mobile devices, software testing, WAP, Java ME, JUnit

Introduction
Mobile applications are used on various

domains like banking, stock exchange, Inter-
net browsing, multimedia transfers, m-
learning. Mobile applications development
and their use it is growing very fast, having
different hardware and software platforms.
Mobile devices, like mobile phones, smart-
phones, PDAs (Personal Digital Assistants),
communicators, pagers etc., compared with
desktop computers, are characterized by:
• less computation capacity
• less memory (RAM and ROM)
• small displays
• limited user interface
• reduced dimensions
• reduced bandwidth.
Every mobile device has a specific applica-
tion development platform, based on the op-
erating system:
• Windows Mobile/CE
• Symbian OS based
• Blackberry OS

• Android
• iPhone OS
• Palm OS/ACCESS
• Linux based
• proprietary operating systems.
These constraints and variety of software
platforms influence the way of designing the
applications and the testing process.
Mobile applications are standalone or desk-
top applications and distributed applications.
Standalone mobile applications are designed
to perform specific tasks without the need of
a network connection. Mostly mobile appli-
cations made for PDAs are such examples of
stand-alone applications.
Distributed applications use a network con-
nection that can be permanently or tempora-
rily. WAP applications for mobile phones
that access an Internet server are examples of
distributed applications as is depicted in fig-
ure 1. The most used distributed applications
are Web-based.

Mobile
phone

Gateway

Binary
WML

Application

server

Web server

Database

Wireless HTTP/TCP/IP

Mobile
phone

xHTML

Fig.1. Mobile Web applications architecture

The request from the WAP enabled phone is
sent to the WAP gateway that makes the

conversion from the WAP stack (for WAP
1.0) or from the optimized wireless opti-

1

Revista Informatica Economică, nr.3(47) 2008

148

mized HTTP/TCP/IP (WAP 2.0) to the
HTTP/TCP/IP stack and encodes the network
packets that will be sent to the Web server as
a HTTP request. The request is processed on
the Web server and the response is send back
to the mobile phone browser through the
WAP gateway that decodes the packets.

2. Java Micro Edition (JME)
JME platform runs on many mobile devices,
which have installed a Java Virtual Machine.
The biggest benefit of using the Java plat-
form for mobile device development is that is
possible to produce portable code that can
run on multiple platforms. It is almost im-
possible to port the complete functionalities
of an application to all mobile devices be-
cause wireless devices have a vast range of
capabilities in terms of memory, processing
power, battery life, display size, and network
bandwidth.
Java ME is divided into several different con-
figurations and profiles. Configurations con-
tain Java language core libraries for a catego-
ry of devices. In this moment there are two
configurations:
 Connected Limited Device Configuration

(CLDC) – designed for small, resource-
constrained devices (cell phones, low-end
PDAs);
 Connected Device Configuration (CDC) –

designed for relatively big and powerful de-
vices (high-end PDAs, set-top boxes, net-
work appliances); CDC has more capabilities
than CLDC in terms of security, mathemati-
cal, and I/O functions.

.

CLDC CDC

JVM KVM

MIDP Foundation Profile

Personal Profile

Fig.2. Java 2 Micro Edition platform

On top of each configuration are profiles. A
profile defines device-specific API libraries,
like GUI, networking, and persistent-storage
APIs. Each profile has its own runtime envi-

ronment and is suited for a range of similar
devices. The main profile for the CLDC is
Mobile Information Device Profile (MIDP).
For the CDC there are two important pro-
files: the Foundation Profile and the Personal
Profile.
There are emulators for different mobile de-
vices, so until the application is running on
the device, it is implemented and tested on
those emulators. The emulators can be confi-
gured to provide the desired Java packages,
existing on the real device.

3. Mobile application testing
The testing of mobile applications is given by
the application type: standalone, distributed
and Web-based.
If the mobile application is stand-alone, the
testing process is similar to the desktop ap-
plications one, having in mind the limited re-
sources of the mobile devices. The testing of
these applications includes:
• functional testing
• usability testing
• structural testing
• performance testing.
For distributed mobile applications, the test-
ing process is different. The client applica-
tion and server application need to be tested
not only independently but also together in
interaction.
In a Web-based application the client is an
Internet browser, and the main functionality
is built on the server-side. Testing Web-
based applications require the following type
of testing [POCA03]:
• functional testing
• compatibility testing
• content testing
• performance testing
• load testing
• security testing
• server-side testing (Web server, applica-

tion server)
• database testing.
Testing Web based mobile applications re-
quire the testing of the server applications
and the testing of the content that is send to
the mobile device. On the client side, the

Revista Informatica Economică, nr.3(47) 2008 149

script functions need to be tested
(WMLScript, JavaScript etc.)
There are many aspects that influence the
testing process and make it difficult. When a
failure occurs, it can have many causes:
• poor user interface design
• bugs in application
• network problems
• insufficient memory
• Web server configuration
• database management system not work-

ing properly
• database scripts contains errors.
Before using the application on the mobile
device, it will be tested using an emulator
and the environment where is developed.
Due their constraints, testing mobile applica-
tions is a challenging process. Testers need to
focus on many additional aspects that are not
specific to desktop applications.

4. Automating unit testing
The automation of software testing consists
of a series of processes, activities and tools
brought together in order to execute the soft-
ware under test and to record the result of the
tests. The testing process has the following
activities:
• test planning

• test design
• test implementation
• test execution
• test evaluation
Each activity has specific deliverables that
are used from a phase to another. At the end,
bug reports and other documentation will re-
sult. These documents are used by the devel-
opment team to identify the cause of faults
and to correct them. After the test plan has
been elaborated, based on specific inputs
(budget, resources, timeline), the next step is
to analyze the requirements and to define the
objectives of testing for the test team. The
design phase is focused mainly on the defini-
tion and design of test procedures. At this
time a decision will be made about what
should be tested manually and what will be
tested automatically. Test cases and test pro-
cedures are the result of test implementation
phase. Test scripts are written in specific
programming languages like Visual Basic,
Java or C++. In this phase, some test scripts
can be reused from the previous tests. Test
execution has as an input the test plan and the
test procedures. After the execution of the
tests, the results are evaluated using an
oracle. An oracle is a specialist that could de-
cide if the result is correct or not.

Execution

Program
under test

Evaluation

Input data

Output

Expected
output

Test results

Fig.3. Execution and evaluation phases for unit testing

Tools for automated software testing of mo-
bile applications are various, and they can be
used in different areas of testing. There are
many tools to assist software testing: cap-
ture/playback tools, tools for automated ex-
ecution of tests, coverage analyzers, test case
generators, logical and complexity analyzers,
code instrumentation tools, defect tracking
tools and test management tools.
For mobile applications developed using Java
the JUnit framework is very good for the au-
tomated testing of the functional issues. One

of the implementation is JMUnit
(http://sourceforge.net/projects/jmunit/).
JMUnit is a framework for regressive unit
testing of Java code. The main objects used
are test cases and test suites, figure 4
[SILV08].
Each class under test (CUT) has an asso-
ciated test case. Test case classes inherit
TestCase class. For each CUT method that
will be tested there is a method in the test
case equivalent class. For example, translate
method from the CUT Dictionary will have

Revista Informatica Economică, nr.3(47) 2008

150

the corresponding method testTranslate in
test case class TestDictionary class. TestDic-
tionary class includes an instance of Dictio-
nary class.

Fig.4. JMUnit main classes

The test suite includes several test cases. The
base class is TestSuite. A test case is added to
the test suite using add method.
Table 1 shows testTranslate method used to
test translate method from Dictionary class.
The testTranslate method checks if the cor-
rect answer is returned. The assert* methods
(assertEquals, assertNotEquals, assertNull,
assertNotNull, assertSame, assertNotSame,
assertFalse, assertTrue) pass or fail if the
given expression complies or not with the as-
sertion.
When the test suite runs, it counts the num-
bers of failures and successes and details are
given, that allowing to developers to find and
correct the errors.
Example of a test method within a test case:

public void testTranslate()
{ String word = "xyz”;
 String expectedResult = "The word does
 not exists in the dictionary”;
 //create client
 DServiceSoap_Stub client = new
 DServiceSoap_Stub();
 //call translate method
 String result =
 client.translate(word);
 assertEquals(
 result.equals(expectedResult), true);
 //...
}

5 Conclusions
Testing mobile applications is a very com-
plex process, depending on the application
type. For Web based applications, not only

the specific response sent to the mobile de-
vice has to be tested, but the whole applica-
tion from the server side. That includes the
testing of JSP, ASP.NET and PHP scripts.
The use of mobile devices emulators makes
the applications compatibility to be solved
before the application is deployed to the mo-
bile devices. There are emulators for almost
all mobile phones platforms. Having many
IDE that allows developing, running and de-
bugging mobile applications, the testing
process becomes easier. Every language used
in developing mobile applications has specif-
ic characteristics that influence the testing
process.
Using testing frameworks based on JUnit for
Java ME applications is a good approach,
having in mind experience of this framework.
Of course, unit testing does not have to be
limited to this framework, other methods and
techniques shall be used.

References
[IVAN01] Ion IVAN, Paul POCATILU, Cristian
TOMA, Alexandru LEAU - e3-commerce: e-
commerce, mobile application. Aplicaţia e3com,
Informatica Economică, vol. V, nr. 3(19), 2001,
pag. 16-23
[MIKK07] Tommi Mikkonen – Programming
Mobile Devices - an Introduction for Practition-
ers, John Wiley & Sons, 2007
[PATT05] Ron Patton – Software Testing, Sams
Publishing, 2005
[POCA02] Paul POCATILU – Automated Soft-
ware Testing Process, in Economy Informatics,
vol. II, nr. 1, 2002, pp. 97-99
[POCA03] Paul POCATILU, Marius POPA –
Internet Applications Testing, Proceedings of 6th
International Conference on Economic Informat-
ics, IE’2003, Digital Economy, Bucureşti, 8-11
May 2003, pp 1028-1032
[POCA05] Paul POCATILU – Testing Java
Programs with JUnit, in Informatica Economică,
vol. IX, nr. 2(34), 2005, pp. 51-55
[SCHL01] Christian SCHLÄPFER, Michal KU-
BIK, Guido ZAVAGLI, - Mobile Applications
with J2ME™, Ericsson Radio Systems AB, 2001
[SILV08] Brunno Silva, Carl Meijer - JMUnit
1.2. Java Micro Unit,
http://sourceforge.net/projects/jmunit/, 2008
[******] java.sun.com/javame/
[******] www.orangepartner.com

