
Revista Informatica Economică nr. 1(45)/2008 124

From Errors Treatment to Exceptions Treatment Regarding the
Execution Control over Visual Basic Programs

Gheorghe POPESCU, Veronica Adriana POPESCU

Academy of economic Studies, Bucharest
Cristina Raluca POPESCU, University of Bucharest

In order to comply with the quality standards and with the best practices, the execution of the

professional programs must be rigorously controlled so that to avoid occurrence of unpredictable sit-
uations that might generate anomalies and could lead to computer blockage, forced termination of the
execution and data loss.
In traditional programming languages, including Visual Basic 6, the concept of error is extremely
evolved. It is considered as error any situation in which the program fails to execute correctly, regard-
less if such anomaly is generated by a software or hardware cause. Nowadays the modern platforms,
including VB.NET have introduced a new concept: exception. Unfortunately, perhaps by mistake, ex-
ception is assimilated by many IT specialists as an exceptional (extraordinary) situation or a rare sit-
uation.
We agree with the opinion of those IT specialists asserting that error is strictly dependant on the pro-
grammer, when he/she fails in correctly generating the application’s structures, whilst exception is a
situation not fitting in the usual natural execution or as desired by the programmer or user, without
meaning that it occurs more often or more rarely.
Designing robust programs implies for such not to terminate abnormally or block, not even upon re-
ceiving improper parameters. Two aspects are referred to: the behavior regarding low level errors
(caused by the operation system, memory allocation, reading/writing in files or hardware malfunc-
tions) and the reaction to the user’s errors, such as providing incorrect input data or incorrect use of
operations in respect with their sequences.
Notwithstanding what platform is used in designing the programs and regardless the controversy be-
tween the specialists, in order for the execution to be terminated under the program’s control, the
commands that might generate anomalies and interruptions should be strictly monitored. Implicitly,
the execution control should be handed over to specialized procedures, able to analyze the causes ge-
nerating the anomaly and to launch into execution the most adequate remedy processes, or, as a last
resort, to allow for the controlled termination of the program.
These elements that are specific to Visual Basic programming are unitarily and systematically pre-
sented both by the traditional unstructured approach of errors and by the modern vision of structured
exceptions’ approach, finally emphasizing the uncontestable advantages of the .NET platform.
Keywords: Error Treatment, Exception Treatment, Programming, Program Control, Program Quali-
ty, Robustness.

ntroduction
In the era of visual programming, when

pseudo-programmers are used so simply
move their hands, it is surprisingly to notice
that in designing professional programs,
which implies: data base design, overlapping
layers architectures, objectives focused pro-
gramming, capitalization of various protocols
categories, network security, firewalls and so
on, over 60% of the code is dedicated to the
errors treatment. Including such code, the
concern to the details of errors treatment is
what makes the difference between a solid,
professional program and a fragile one,

which blocks when something unexpected
happens. A good rule in programs design is
that if something is likely to happen then it
will definitely happen, and that if a user can
introduce wrong data, regardless how differ-
ent they are from the real data or how im-
probable they might be, then he/she will.
The minimal quality prerequisites regarding
the safe programs exploiting imply:
- That the program doesn’t block, regardless
the situation;
- If it is possible to remediate the situation
having generated the interruption, such

I

Revista Informatica Economică nr. 1(45)/2008

125

should be solved in order for the program to
continue;
- If the program cannot continue, an ade-
quate explicit message should be displayed,
indicating the reason for which the program
ends forcedly;
- No data losses should exist upon the ab-
normal termination of the program. The pro-
gram should end under control, allowing for
the data and the application status to be
saved;
- There should be saved, displayed and/or
journalized the information necessary in or-
der to find and solve the anomaly (the status
having generated the natural interruption of
the processing).
In order to achieve these aims, before being
implemented programs should be tested, with
test data or with real test data, phase which is
also known under the name of program
mending and fixing (Oprea, 1999).
The main purpose of mending is to eliminate
errors from the program. A program’s errors
can be: syntactical errors, detected upon
compiling; connections editing errors (unsa-
tisfied references); execution errors; logical
errors.
For the first three mentioned errors catego-
ries, the computer (the programming or de-
velopment environment) provides the pro-
grammer with adequate assistance tools
(finding and locating).
Logical errors are the most difficult to find,
because they are not emphasized and, even
though by program execution some results
are obtained, such do not guarantee program
correctness. Incorrect results can be obtained
which can seem correct, or most times cor-
rect results can be obtained and only upon
certain situations, incorrect results. A pro-
gram can comprise logical mistakes. In order
to eliminate (actually, to limit) them, the pro-
gram should be tested.
Testing is usually made by specialized per-
sonnel, coordinating the entire activity. The
number of the testing personnel in the case of
complex systems often exceeds by far twice
the number of design and creation personnel.
The operation supervisors handle the design
of tests plans, and also set out the standards

for testing, assessing and communicating the
results.
Mosley (Mosley, 1993) describes seven cate-
gories of application tests. Testing is diffe-
rentiated depending on the performance
manner: manual (made under human control)
or automatic (made under computer control)
and on the used techniques: static (the source
program is verified without being run) or dy-
namical (the source program is run). Manual
tests include: examinations, test run and of-
fice verification, whilst automatic tests in-
clude: syntactical validation, components
testing, integrity testing and system testing.
Where:
- Examinations are activities aiming to en-
sure visual identification in the source code
of the most frequent errors, grounded on er-
rors typologies that are specific to each lan-
guage.
- Test run examines and visualizes the effect
of each command in order to identify poten-
tial errors (omissions or inconsistencies) de-
pending on the role of the assessor, who can
be: the user, the future functional supervisor
of the product, the product provider, etc.
- Office verification is the action by means
of which a language specialist, usually dif-
ferent from the programmer, verifies the pro-
gram line by line by pencil and paper. Mem-
ory areas are defined, initialized, calculations
and verifications are made, exactly as the
computer would do.
- Syntactical validation is the only static au-
tomatic verification technique performed by
a compiler which emphasizes syntax errors.
- Components’ testing is the test made over
the basic components: functions, procedures,
objects or modules, depending on the specific
of the language, in order to verify their cor-
rect functioning.
- Integrity testing involves testing the as-
semblies, related modules, in order to verify
the inter-operability between their compo-
nents.
- System testing aims to verify programs as
a whole.

1. About Error or Exception in Modern
Programming

Revista Informatica Economică nr. 1(45)/2008 126

In traditional programming languages, in-
cluding Visual Basic 6, the concept of error
is extremely evolved. It is considered as error
any situation in which the program fails to
execute correctly, regardless if such anomaly
is generated by a software or hardware cause.
Nowadays the modern platforms, including
VB.NET have introduced a new concept: ex-
ception. Unfortunately, perhaps by mistake,
exception is assimilated by many IT special-
ists as an exceptional (extraordinary) situa-
tion or a rare situation.
We agree with the opinion of those IT spe-
cialists (Dospinescu, 2004) asserting that er-
ror is strictly dependant on the programmer,
when he/she fails in correctly generating the
application’s structures, whilst exception is a
situation not fitting in the usual natural ex-
ecution or as desired by the programmer or
user, without meaning that it occurs more of-
ten or more rarely.
Rumbaugh identifies three important quality
criteria in writing programs, regardless their
complexity (Rumbaugh et al., 1991): code re-
using probability, extensibility and robust-
ness.
Robustness implies that a program does not
end abnormally not even if it receives inade-
quate parameters. It refers to two aspects (Io-
nita, 2003): the behavior regarding low level
errors (caused by the operation system,
memory allocation, reading/writing in files or
hardware malfunctions) and the reaction to
the user’s errors, such as providing incorrect
input data or incorrect use of operations in
respect with their sequences.
Most times errors in the first category call
only for an elegant interruption of the pro-
gram, in order to leave the working environ-
ment as clean as possible and to save as
many information as possible for diagnosis
purposes. Robustness upon using errors is
however never sacrificed; these sorts of
anomalies must be foreseen upon analysis
and mentioned in creation specifications, for
the purpose of being subsequently solved.
Under such circumstances, the exception is
the error situation or the unexpected behavior
encountered in a running program. Excep-
tions can occur both in the running program

and in its running environment. Program de-
velopers mostly handle program exceptions
that can cause its blockage. A program can
run perfectly, yet when attempting to save a
file the disk is unexpectedly full or the floppy
disk unit is not ready, or the floppy disk is
not inserted.
However, regardless the specialists’ concep-
tual disputes, professional (industrial) pro-
grams should answer to some minimal quali-
ty standards regarding their safe exploiting.
Quality beings by complex understanding of
what the program does and the way in which
the user will interact with it. The professional
designer’s objective is to anticipate each
possible way in which the program could go
wrong, and to take measures in order to fix
exceptions. The programmer must complete-
ly understand the way in which each variable
will interact with the program, the way in
which it is stored in CPU registers, the way
in which it is processed by the memory and
so on.
For the common language routine (CLR) an
exception is an object deriving from the Sys-
tem.Exception class, basic class from which
all exceptions are inherited. Exception is
generated by the code sequence where the
problem occurs towards that part of the code
which is destined to receive and to treat the
error. The type of exception will determine
the code which is to treat the exception.
The Visual Basic development environment
finds all design errors (syntax errors) occur-
ring when a command is written incorrectly
(incorrect key words, missing parameters, in-
correct expressions, etc.), providing neces-
sary assistance upon their repairing (place-
ment on the error line, contextual help, assis-
tance in introducing expressions, methods,
properties or reserved words, etc.).
Repairing the other types of errors, running
and logical, is in charge of the programmer.

In order to test programs, good practices rec-
ommend (Harold, 2003):
- For the testing process to be performed ri-
gorously and with discipline;
- For more imagination and perseverance to
be used in insisting upon simulating anoma-

Revista Informatica Economică nr. 1(45)/2008

127

lies, because in real life anything that can go
wrong will go wrong;
- For the testing process to be carefully
tracked, potentially by using a program de-
signed for other programs’ testing process;
- For special attention to be paid to testing
variables’ values;
- For extreme values to be taken into con-
sideration (those at the higher and lower lim-
its of possible variables’ values intervals);
- For potential counting errors to be careful-
ly evaluated when the programs has a logical
error comprising a repetitive structure;
- For potential irregularities to be tracked
down, for which reason the program should
be tested in the most diverse situations possi-
ble.
Despite the efforts for testing programs even
from the programming and implementation
phases, in order for such to be safely ex-
ploited, there must be included in the pro-
gram, in its source, in the delicate risk areas,
some special procedures for tracking down
and treating the anomalies occurring during
programs’ exploiting.
Detect and repair procedures for the anoma-
lies occurred in programs’ exploiting are dif-
ferent in the traditional programming lan-
guages compared to the modern platforms. In
order to emphasize the basic mechanisms of
two of the most common practices, we will
describe errors treatment in Visual Basic 6
and exceptions treatment in VB.NET.

2. Unstructured Errors Treatment
The standard method for treating detectable
errors in Visual Basic 6 (Popescu, 2005) im-
plies the use of the instruction On Error Go-
To label.
Actually, when Visual Basic encounters a de-
tectable error, it interrupts the program run-
ning (its natural execution) and transfers the
control to the first command in the block
identified by label. The command On Error
GoTo should be placed before the instruc-
tions to the errors of which it refers (in order
to configure the errors treatment routine), and
before the label a procedure ending (termina-
tion) command should be included if the
processing ends without an error (in order to

not force errors treatment commands’ execu-
tion even in the case when such errors do not
occur).
At the end of errors treatment instructions
block the instruction Resume can be placed,
which allows for the operation (instruction)
which produced the error to be reinitiated.
Using this command is benefic only if during
error treatment it is possible for such to be
fixed, otherwise (if the error persists)
Resume instruction can lead to infinite cycl-
ing. In order to transfer the control to the first
instruction following the one which causes
the error (and hence in order to avoid cycl-
ing) the Resume Next command should be
used, and in order to transfer the control to
another line or label within that procedure,
the Resume label command must be used
(see figure 1).
Errors treatment involves displaying the error
number and description and suggestion of
several alternatives for Retry, Ignore, or Ab-
andon. The error number is given by the ERR
() function. The explanatory message asso-
ciated to an error number will be transmitted
by the ERROR$ (error_number) function.
The suggestion regarding processing contin-
uation is made by means of the command
buttons within an MsgBox. The code at-
tached to the command buttons can be:
Resume (for Retry), Resume Next (for Ig-
nore), Exit Sub (for Cancel) and Resume la-
bel (for Resume from a certain label).
A professional approach of errors treatment
implies the creation of a customized errors
treatment procedure. This procedure should
accept as a parameter the number of the er-
ror, returned by function ERR () and, de-
pending on the error number, it must display
the explanatory message in Romanian lan-
guage, with the help of a Select Case struc-
ture, by using the exhaustive translated list of
the traceable errors. It is obvious that in order
to make this procedure available to the entire
application, it should be defined in a standard
module.
The unstructured errors treatment by using
On Error statements can really damage the
application’s performances and can create a
difficult repair and maintenance code. First

Revista Informatica Economică nr. 1(45)/2008 128

of all, because we are forced to use the GO
TO command, even though under a masked
form, and secondly because the unstructured
errors treatment mode can be confuse when

successive appeals occur of other procedures,
potentially written in other programming
languages, which include or not their own er-
rors treatment mechanisms.

Fig.1. Structure of procedures subjected to errors treatment

3. Structured Exceptions Treatment
In VB.NET systematic exceptions treatment
uses an improved version of the Try … Catch
… Finally syntax, already supported by other
programming languages (Conell, 2002). This

form of exceptions treatment combines a
modern control structure (similar with Select
Case or While), with the exceptions, pro-
tected and filtered code blocks:

Try ’ Launch supervision
 Program instructions
 …
 [Catch1 [exception [As type1]] ’ Explicit treatment of the type1 exception
 [When expression]
 …
 [CatchN [exception[As typen]] ’ Explicit treatment of the type n exception
 [When expression]
 …
 [Finally
 Final program instructions]

End Try ’ End of exceptions treatment

Where:
- The code in the Try – Catch block
represents the code of the program monitored
for detecting and repairing potential anoma-
lies;
- The code included in each of the Catch
blocks is run in order to treat specific excep-
tions;

- The code in the Finally code block is ex-
ecuted upon processing termination, notwith-
standing if an exception is initiated or not.
In the Catch exception treatment blocks, in
order to be sure that unpredictable exceptions
will be also tested, it is appropriate for the
command Catch except As Exception to be
included as a last resort, allowing for the ge-
neric treatment of the exceptions which have

Revista Informatica Economică nr. 1(45)/2008

129

not been indicated as specific exceptions in
the previous blocks.
The exception generating process is techni-
cally referred to as exception throwing,
whilst its treatment is referred to as exception
catching.
Actually, if an anomaly occurs that generates
an exception in the monitored block in Try
area, the natural execution of the program is
interrupted (the rest of unexecuted com-
mands are ignored), and the control is trans-
ferred to the Catch block. The Catch block
receives as argument an instance of the ex-
ception which generated the interruption, ar-
gument which allows for the type of anomaly
to be identified. Depending on the occurred
exception, such will be treated in the Catch
block, either as a specific anomaly (if it has
been explicitly foreseen and treated), or as a
generic anomaly, if it hasn’t been explicitly
foreseen and treated. If the application is
complex and calls for final operations: results
transfer, files or data base closure, working
zone cleaning etc., then these processes will
be placed in the Finally block, which will be
executed regardless if any exception occurs
or not.
For the systematic exceptions treatment in
VB.NET, the programmer can use the excep-
tion class Exception Class, which provides
amongst its properties information regarding
the name of the occurred exception, place
where the anomaly occurs, the object or ap-
plication having created the exception, etc.
These elements will be valorized in the Catch
block in order to identify, explain and/or
journalize the found exceptions. All excep-
tions are deriving from the basic Sys-
tem.Exception class. This class has four main
features providing information about the ex-
ception (Troelsen, 2002):
- .Message – describes the occurred excep-
tion;
- .StackTrace – comprises the set of me-
thods appealed until the moment when the
exception occurs.
- If information exist for repair, the name of
the file with the source-code and the row
number are provided;

- .InnerException – comprises another ob-
ject Exception. This happens in the case
when an exception is cached which is then
run through a set of exception processing
blocks;
- .HelpLink – is an access way to a Help file
which might have more information on the
occurred exception.
In order to select the sort of exception to be
treated in the Catch block, the programmer
benefits of an extensive list provided by the
auto fill in system in the Code Editor.

The structured exceptions treatment is an in-
tegrated service in the core of the program-
ming framework .NET – in .NET Frame-
work, so that it is available to all languages
targeting the .NET platform.
In its intimacy, exceptions treatment implies:
a) Administered execution code of a Visual
Basic.NET program meets a Try block;
b) CLR automatically writes a generic excep-
tions treatment core in the appeals Bulk;
c) CLR appeals the command in the Try
block which can generate an exception;
d) The execution code meets an anomaly and
generates an exception;
e) CLR looks in the bulk in order to find the
potential exception treatment code, locating
the appellant;
f) If the code is found, then CLR carries out
the bulk;
g) The location information along with the
program control are transferred back to the
Catch block of the execution program;
h) The Catch block is executed.
The exceptions which are not included in a
Catch block are treated by the common lan-
guage execution routine; however the main
concern of a professional programmer should
be to avoid at any cost such situations.
From the Exception class there derive a se-
ries of other specialized classes which, de-
pending on the needs, can be used in excep-
tions treatment. Moreover, the programmer
can define his own classes deriving from the
exceptions treatment system classes for a
unitary treatment and solving of the excep-
tions.

Revista Informatica Economică nr. 1(45)/2008 130

Two of the most important classes deriving
from System.Exception are Sys-
tem.Application (for treating errors generated
by the application, and not by CLR) and Sys-
tem.SystemException, which is the basic
class for all exceptions involved in the name
area System.

Conclusions
A mandatory prerequisite for professional
programs is to control the program’s running
by foreseeing any potential situations that
might affect the natural carrying out of the
processes in both the program and its running
environment (Nastase et al., 2007). These
should uniformly and elegantly treat the most
specific situations of the foreseen anomalies
in the relationships with the user and execu-
tion environment. The repair will be ensured
by displaying adequate messages, specific to
the encountered irregularities, and then of the
more general situations, in the case of which
regardless if they cannot be repaired and im-
pose running interruption, such should be
made under control, by displaying an expla-
natory error message, even by journalizing
the conditions in which the irreparable inter-
ruption was generated and mandatory by
closing the files, saving the data and
processes performed up to the moment of the
incident.
Not treating the anomalies by means of the
program implies that when such occur, the
program blocks, and a general encrypted sys-
tem message is displayed. Program termina-
tion would be very unpleasant, implying data
loss and sudden processes finalization, upon
ambiguity over the status of the program and
over the data that most times impose reboot-
ing and re-indexation or worst reinstalling
and re-initializations of the processes in pre-
vious phases with well defined statuses.
At the present moment the .NET platform in-
cludes a very powerful exceptions treatment
tool. It can be definitely said that the excep-
tions treatment mode, which is based on ex-
ception objects and protected code blocks has
reached its maturity.
References

• Connell, J. (2001) Microsoft Visual Basic .NET,
Redmond: Microsoft Press
• Dospinescu, O. (2004) Dezvoltarea aplicatiilor
in Visual Basic., Iasi: Polirom
• Harold, D. (2003) Visual Basic .NET for win-
dows, SUA: Pearson Education, Inc. Publishing
as Peachpit Press
• Ionita, A.D. (2003) Modelarea UML in ingine-
ria sistemelor de programe, Bucuresti: Bic All
• Mosley, D.J. (1993) The Handbook of MIS Ap-
plication Software Testing, Englewood Cliffs,
New Jersey: Yourdon Press
• Oprea, D. (1999) Analiza si proiectarea siste-
melor informationale economice, Iasi: Polirom
• Popescu, Gh. (2005) Programarea calculatoa-
relor in Visual Basic, Bucuresti: Editura Gesti-
unea
• Rumbaugh, J. & Blaha, M. & Premeriani, W. &
Eddy, F. & Lorensen, W. (1991) Object-Oriented
Modelling and Desing, SUA: Prentice-Hall
• Troelsen, A., (2002) Visual Basic.NET and the
.NET Platform: An Advanced Guide, SUA:
Apress

