
 Revista Informatica Economică nr. 1(45)/2008 114

Building a dynamically ASP.NET 2.0 GridView control

Cătălin NĂCHILĂ
Petroleum - Gas University Of Ploiesti Ploieşti, România

Microsoft Visual Studio 2005 (based on ASP.NET 2.0), the successor to Visual Studio

.NET 2003 has a lot of new features and goodies designed for Web developers. This article
show how a ASP.NET 2.0 control can be dynamically connected to Microsoft Access
database. The delete and update operation will be implemented using a GridView control and
SQL queries. The connection between the database and the .NET application will be made
with OleDb Data provider, the new Access Data Source control. The SQL queries will be
implemented with OleDbCommand.
Keywords: dynamic GridView, AccessDataSource, OleDbConnection, OleDbCommand.

SP.NET 2.0 defines a few key
composite data-bound controls, such as

GridView, FormView, and DetailsView. The
GridView is a major upgrade of the
ASP.NET 1.x DataGrid control, with the
added ability to take advantage of data source
controls. The GridView control supports
several new features, including the built-in
ability to sort, edit, page, select, and update
data. The GridView control has several
features that weren’t available in the
DataGrid control, in particular: binding to
the new data source controls, including
AccessDataSource and SqlDataSource.
A GridView can be connected to a database
in many ways:
– static (automatically) – using Server
Explorer and the data source control; in this
case, the GridView is connected to the
database through the data source control
when the Web page is designed;
– dynamic (programmed) – using object
like: OleDbConnection, OleDbCommand,
OleDbDataAdapter, OleDbDataReader
and OleDbParameter or using the same
type of object but with another data
providers; the data providers which can be
used with those object are: ODBC Data
Provider, OleDb Data Provider and SQL
Data Provider.
– dynamic (programmed) – using
DataAdapter and Fill()method.
Another innovation of ASP.NET 2,0 is the
new type of data source controls:
AccessDataSource. This control represents a
connection to an Access database. It inherits

from the SqlDataSource control but throws
an exception if you attempt to set the
ConnectionString and ProviderName
properties. The control uses the Jet 4.0
OLEDB provider to connect to the
database.
The application
The following controls are brought to the
Web form: two Button controls, one
DropDownList, three Label controls and one
GridView. The first button (Button1) is
used to get the tables from the database. The
names of the tables are presented in the
DropDownList control (DropDownList1).
The second button (Button2) is used to
assign GridView’s (GridView1) data
source to the table selected in the
DropDownList. The first label (Label1) is
used to show eventually errors. The other
two labels (Label2 and Label3) are used
to keep the name of the selected table from
the DropDownList1 and the primary key
of the record which is in the editable mod of
the GridView1. The property visible for
the Label2 and Label3 will be set to
false. The user doesn’t need to see those
values.
The GridView1 must be set up before, for
using the edit and delete operation. From the
GridView1 Show Smart Tags we choose
Add New Column. We select CommandField
for the Field Type. We check Delete and
Edit/Update and choose Button for the
Button Type. In this way, we will have both
buttons, Edit and Delete, in the first column

A

Revista Informatica Economică nr. 1(45)/2008

115

of GridView1. It must be mentioned that
the first column and the first row (except for
the paging row if it has position set to top) of
a GridView have the index 0. For example,
the HeaderRow has the index 0.
If the user wants, he can set up the properties
for the two buttons (Edit and Delete) if he
converts the first column of the GridView1

into a Template field (from the GridView1
Show Smart Tags the user choose Edit
Column – figure 2).
The Web form should look like in the figure
1.

Figure 1. The Web form Figure 2. Convert into a Template Field

For the application I used a small Microsoft Access database named books.mdb which has
the diagram presented in figure 3.

Figure 3. The tables and relationships of books.mdb.

Connection with the database
The connection with a Microsoft Access
database can be made in different ways. I
used two of them:

a) if we need to make more operation on the
database, we use the OleDbConnection;
in the connection string the provider must be
specified and the path of the database.; the
general syntax is:

OleDbConnection user_name_of_connection = new OleDbConnection
 (string connection string)
………… // user’s code
user_name_of_connection.Open();
………… // user’s code
user_name_of_connection.Close();

 Revista Informatica Economică nr. 1(45)/2008 116

In the application the following syntax is used for Button1_Click event:

DropDownList1.Items.Clear();
OleDbConnection connection_table = new
 OleDbConnection(@"Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=D:\doc\Articol\App_Data\books.mdb");
connection_table.Open();
string[] restrictions = new string[4];
restrictions[3] = "Table";
DataTable userTables = connection_table.GetSchema("Tables",
 restrictions);
for (int i = 0; i < userTables.Rows.Count; i++)
{
 DropDownList1.Items.Add(userTables.Rows[i][2].ToString());
}
connection_table.Close();

b) if the database records need only to be displayed, a more simple method which use an

AccessDataSource object can be chosen; the general syntax is:
AccessDataSource user_name_of_data_source = new AccessDataSource
(string data file, string select command)

In the application the following syntax is used for Button2_Click event:

AccessDataSource Access_Data_Source1 = new AccessDataSource (
 "~/App_Data/books.mdb",
 "SELECT * FROM " + DropDownList1.SelectedValue.ToString());
GridView1.DataSource = Access_Data_Source1;
GridView1.DataBind();
Label2.Text = DropDownList1.SelectedValue.ToString();

Programming the GridView
Before programming the events of the
GridView control we write a function named
GridLoad() for the GridView1 data
binding. The code is similar to the
Button2_Click without the Label2.Text
line.
The events fired by the GridView control
which are used in the application are:
– RowEditing – occurs when a row’s Edit
button is clicked, but before the control
enters edit mode;

– RowUpdating – occur when a row’s
Update button is clicked;, but before the
control updates the row;
– RowCancelingEdit – occurs when the
Cancel button of a row in edit mode is
clicked, but before the row exits edit mode.
– RowDeleting –occur when a row’s Delete
button is clicked, but before the grid control
deletes the record from the data source.
The code for RowEditing and
RowCancelingEdit is:

protected void GridView1_RowEditing(object sender,
GridViewEditEventArgs e)
{
GridView1.EditIndex = e.NewEditIndex;
GridLoad();
Label3.Text = "" +
(((TextBox)((GridView1.Rows[GridView1.EditIndex].Cells[1].Controls[0
]))).Text);
}
protected void GridView1_RowCancelingEdit(object sender,

Revista Informatica Economică nr. 1(45)/2008

117

GridViewCancelEditEventArgs e)
{
GridView1.EditIndex = -1;
GridLoad();
}

In Label3 is kept the primary key of the
record which is in edit mode. The value is
needed because I want to update even the
primary key.
The events GridView1_RowUpdating and
GridView1_RowDeleting are similar. In
the first part of those two, are used

OleDbConnection, OleDbCommand and
OleDbDataAdapter objects to get the
selected table attributes.
The general syntax for those objects is:

OleDbConnection user_name_of_connection = new OleDbConnection
 (string connection string)
user_name_of_connection.Open();
OleDbCommand user_name_of_command = new OleDbCommand();
user_name_of_command.Connection = user_name_of_connection;
user_name_of_command.CommandType = CommandType.CommandText;
user_name_of_command.CommandText = string_SQL;
………… // user’s code
OleDbDataAdapter user_adaptor = new OleDbDataAdapter(string Select
cpmmand text, string connection);
DataSet user_DataSet = new DataSet();
………… // user’s code
user_adaptor.Fill(user_DataSet, source table);
………… // user’s code
user_name_of_command.ExecuteNonQuery();
………… // user’s code
user_name_of_connection.Close();

The common code for the two events is:

// Variables
int nr_of_table_attributes, i = 1;
nr_of_table_attributes = GridView1.HeaderRow.Cells.Count;
string[] table_attributes = new
 string[GridView1.HeaderRow.Cells.Count];

// Connection
OleDbConnection connection_update_record = new OleDbConnection
 (@"Provider=Microsoft.Jet.OLEDB.4.0;
 Data Source=D:\doc\Articol\App_Data\books.mdb");
connection_update_record.Open();

// Command
OleDbCommand cmd_update_record = new OleDbCommand();
cmd_update_record.Connection = connection_update_record;
cmd_update_record.CommandType = CommandType.Text;

// Get the selected table attributes
string query_update_record = "SELECT * FROM " +
Label2.Text.ToString();

 Revista Informatica Economică nr. 1(45)/2008 118

OleDbDataAdapter Adaptor = new OleDbDataAdapter(query_update_record,
connection_update_record);
DataSet Set_de_date = new DataSet();
Adaptor.Fill(Set_de_date, Label2.Text.ToString());
DataTable Tabel_de_date = Set_de_date.Tables[0];
foreach (DataColumn Coloana_date in Tabel_de_date.Columns)
{
 table_attributes[i] = Coloana_date.ColumnName;
 i++;
}

Updating the records
After the Edit button is pressed, the cells of
the selected record becomes TextBox
controls. For each one of this controls we
make an SQL UPDATE query. If we don’t

want to update the primary key or the
database doesn’t admit this operation, we
don’t take the primary key anymore and the
for cycle will start from 2 instead of 1. The
code is:

int primary_key = Convert.ToInt32(Label3.Text);
for (i = 1; i < nr_of_table_attributes; i++)
{
cmd_update_record.CommandText = "UPDATE " + Label2.Text.ToString()
 + " SET " + table_attributes[i] + "= '" +
(((TextBox)((GridView1.Rows[GridView1.EditIndex].Cells[i].Controls[0
]))).Text) + "' WHERE " + table_attributes[1] + "= " +
primary_key + ";";
primary_key =
Convert.ToInt32((((TextBox)((GridView1.Rows[GridView1.EditIndex].Cel
ls[1].Controls[0]))).Text));
cmd_update_record.ExecuteNonQuery();
}
connection_update_record.Close();
GridView1.EditIndex = -1;
GridLoad();

For a better understanding of the error and
the problem which generated it, a try – catch
block can be used, especially in the
sequences in which we communicate with
the database: when a connection is opened,
when an Adaptor is filled or when an
ExecuteNonQuery()is used.
For example, Label1 can be used to show
the errors and the user can understand which
was the mistake:

try
{
cmd_update_record.ExecuteNonQuery
();

Label1.Visible = false;
}
catch
{
Label1.Visible = true;
Label1.Text = "Data type
mismatch. Enter a correct
value.";
}

Delete the records
Before using the command, we must get the
index of the row were we pushed the Delete
button. The SQL DELETE command query
is:

GridView1.EditIndex = e.RowIndex;
GridLoad();
cmd_delete_record.CommandText = "DELETE FROM " +

Revista Informatica Economică nr. 1(45)/2008

119

Label2.Text.ToString() +" WHERE " + table_attributes[1] + "=" +
(((TextBox)((GridView1.Rows[GridView1.EditIndex].Cells[1].Controls[0
]))).Text) + ";";
cmd_delete_record.ExecuteNonQuery();
GridView1.EditIndex = -1;
connection_delete_record.Close();
GridLoad();

Conclusion
The static method is limited and is indicated
when small databases are used with a few
tables and in the case of simple Web
applications which don’t need dynamically
programming because of their field of
application.
The dynamic method is more complex and is
used for bigger and more complicated Web
application which are connected to big
databases with a lot of tables or if the field of
application ask for it.
The static method perform data-manipulation
tasks (such as retrieving and updating the
records in a table). The Command class
allows to execute any type of SQL statement.
The .NET developer can use a Command
class to perform data-definition tasks (such
as creating and altering databases, tables, and
indexes).
An advantage of the dynamic method over
the static method is that it doesn’t use on the
web form a large number of controls. In the
dynamic method the same control can be
programmed for many operations instead of
putting a control on the form for every
operation. As was seen in these application,
the UPDATE and DELETE command can be
used on every database that user select using
a single GridView control.

Bibliography
1. Dino Esposito, Introducing Microsoft
ASP.NET 2.0, Microsoft Press, 2004
2. Ion Smeureanu, Marian Dârdală, Adriana
Reveiu, Visual C#, Cison, 2004
3. Matthew MacDonald, Mario Szpuszta, Pro
ASP.NET 2.0 in C# 2005, Apress, 2005

