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Application of the Scaling Functions to Nonparametric Regression 
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For estimating regression function we can use many proceedings. In this paper, we have cho-
sen to apply scaling functions to the estimation of regression functions. 
When one knows many bivariate date with the values of two variables, in the goal to express a 
correlation between the two variables we use the regression function. The raw estimator of 
this function must be “smoothed out” in some way to get a final estimator.  For this, we use 
the scaling functions, examples of such function being the Battle-Lemarié family and Daube-
chies family. After introducing several notions (multiresolution analysis, filter and projection 
of function onto approximation spaces), these are applied to obtain the estimators. In the last 
part, we present the  algorithm for estimating nonparametric regression function through the 
scaling functions. 
Keyworks: nonparametric regression, scaling functions, filter, multiresolution analysis, ap-
proximation space, estimator.  

 
ntroduction 
Th

bivar
e typical case is that one when we have 
iate data   and we 

want to use the data to quantify the relation-
ship between the two variables. The standard 
regression model is

( )ii yx , , ni ,,2,1 K=

( ) iixi fy ε+= , 
(1), where the ni ,,2,1 K= iε  ‘s are inde-

pendent and identically distributed ( )2,0 σN
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random variables. The primary interest is in 
estimating the regression function  from 
the data. In parametric regression, we assume 
a particular structure on the regression func-
tion   (polynomial, logarithmic, exponen-
tial etc.). Statistical inference involves de-
termining the parameter. Although 
parametric regression is used widely in 
practice, in many situations, one might be 
reluctant to choose a specific form of a 
model to fit a particular set of data. The field 
of nonparametric regression has developed to 
fit a curve to data without assuming any par-
ticular structure on the regression function . 
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We assume that the values ’s are increas-
ingly ordered: 

ix

nx <<2< K1

1−−= iii xx i
 and 

let d , n,,3,2 K= . We define  

as mean of other values

1d

id
1

1x
1

2
1 −

−
=

−
=
∑
=

n
x

n

d
d n

n

i
i

11 d =− nxb =

bxxxxa n =

. 

If we note , , we obtain 0xxa =

<<<<= K210 , which means 
that the values of variable x  lie on the inter-
val [ ]ba,

]1,0
. Because we wish as these values to 

be placed in interval [ , we achieve a re-
scaling of these through linear transforma-

tion [ ] [ ]1,0,: →baϕ , ( )
ab
axx

−
−

=ϕ . Using no-

tation ( )ii xx ϕ=′ , i n,,2,1 K= , we have 
10 210 =′<<′<′<′= nxxxx K

ix
]1,0 ix

ndd

. For this rea-
sons, it will be assumed that the variables  
lie on the unit interval [ . Frequently,  
are equally spaced, which means 
that d === K21 . In this situation we ob-

tain
n
ixi =′ ni ,,2,1 K, =  (2). The raw estima-

tor of the regression function  is the piece-
wise constant function 

(3). If the val-

ues  are equally spaced, we have 
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 (4). Farther 

we introduce some theoretical elements nec-
essary about scaling functions. 
Scaling functions 
A function  ( f ) be-
longs to the square-integrable function space  
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( )R2L  ( ), if both  and  are inte-
grable on  

[ baL ,2 ] f 2f
R  (on ). Therefore, we have 

 . For two 

functions  ( ) we 

define inner product
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, , by means him we 

obtain the norm of a function ( )R2Lf ∈  

[ ]( )baLf ,2∈ , fff ,= . A basis { }
Z∈jjf  

for  ( ) is a orthonormal basis 
if

( )R2L [ baL ,2 ]
1=jf , Z∈∀j 0, =kj ff , Z∈∀ kj, , 

. The vectors of a set kj ≠ ⊂A ( )R2L  
( ⊂A [ baL ,2 ] ) span a subspace V  if 

 and we write 

. A sequence of subspaces 
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( )ASpV = ( )
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of  ( ) form a multiresolution 
analysis if 1) 

; 2) 

,  

( )R2L [ baL ,2 ]

KK ⊂⊂⊂⊂⊂⊂ −− 21012 VVVVV
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=
j

jV 0 =
∈
U

Zj
jV ( )R2L  ( ); 3) 

, ; 4) 
, ; 5) There ex-

ists a function  such that the 

set

[ baL ,2 ]

jVf ∈ ⇔ ( ) 12 +∈⋅ jVf Z∈∀j

0Vf ∈ ⇒ ( ) 0Vkf ∈−⋅ Z∈∀k

0V∈Φ

{ }Z∈Φ kk  / ,j , where ( ) ( )kxx j
j

kj −Φ=Φ 22 2
, , 

(5) constitutes an orthonormal basis 
for , . The fifth property show that 

Z∈∀k
jV Z∈∀j

=jV { }( )Z∈Φ kSp kj  / , . The set 
( ){ }Z∈−⋅Φ=Φ kkk  / ,0 , obtained by apply-

ing integer translations, form a basis for . 
The function  is called the scaling function 
since its dilates and translates constitute or-
thonormal bases for all  subspaces, which 
are simply scaled versions of . For any 
function  

0V
Φ

jV

0V
( )R2Lf ∈ [ ]( )baLf ,2∈ , we note 

 the projection  of a function  onto the 
subspace . By virtue of the second prop-

erty, approximation  of function  

converges of this function , as 

fP j f

jV

fP j f

ffP j →

∞→j  in the  sense2L 0→− ffP j , as 

∞→j . Because { }Z∈Φ kkj  / ,  is a basis for 

, we get jV ( )( ) (xcxfP kj
k

kj
j
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 (6). For 

functions  with support compact 
(

f
( ) ( ){ }0  psup ≠∈= xf/xf R ), it is easily 

seen that only finitely many sequence ele-
ments { }

Z∈kkjc ,  will be non-zero. Since the 
set { }Z∈Φ kkj  / ,  is an orthonormal basis 
for , the scaling function coefficients can 

be computed 
jV

( ) ( )∫
∞+

∞−
Φ=Φ=

 

 ,,, , duuuffc kjkjkj
(7). 

Far away, we propose to express the coeffi-
cients  of the approximation of  in 
space  in terms of the coefficients  of 
the approximation of  in space . 

kjc , f

jV kjc ,1+

f 1+jV
Note that 0V∈Φ  and therefore also  
since . Because 

1V∈Φ

10 VV ⊂ { }Z∈Φ kk  / ,1  is an or-
thonormal basis for , there exists a se-
quence 

1V
{ } Z∈kkh , which is called filter, such 

that ( ) ( )xhx
k

kk∑
∈

Φ=Φ
Z

,1 (8) and that the se-

quence elements may be written 
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 ,1,1, dxxxh kkk (9). This 

sequence is a square-summable sequence 
({ } Z∈kkh ∈ ( )Z2l ), that is . Using 

(5) and (8), we may show that 
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this result into (7) we obtain 
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+−=
Zl

ljklkj chc ,12, (11) relation which allow 

to write coefficients on  in terms of co-
efficients on . The simplest scaling 

function is . 

Applying a usual dilation and usual transla-
tions, we obtain  
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which show that approximation spaces  
consists of functions that are piecewise con-
stant, more exactly 

jV

( ) ( )[ ){ }Z∈− kk j  ,2,R∈= − kf/LfV j
j 12on constant  piecewise is   2 +

. At the same time, according to (7), the coef-
ficients  are computed from the formula kjc ,
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j
duufc . Since for j  fixed, 

any  lie on the only one interval of 
type

R∈x
( )[ )12,2 +−− kk jj , using (6) we obtain 

( )( ) ( )( )
∫

+

−

−

−
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12 

2 2
1 k
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j

j

j
duufxfP which show 

that this approximation of  in f x  is “mean” 
of all function values on the interval 

( )[ )12,2 +−− kk jj . Another example of scaling 
function is the Battle-Lemarié family. The 
first member of the Battle-Lemarié family is 
identical to the scaling function defined be-
fore ( ) [ )

⎩
⎨
⎧ ∈

=
otherwise  ,0

1,0  ,1
1

x
xN . In constructing of 

the members of this family, the cardinal B-
spline functions are useful, which are piece-
wise polynomial functions, defined through 
convolution operator ∗  (for ( )R2, Lgf ∈  we 
have: 

 ( ) ). ( ) ( ) ( )∫
∞+

∞
−=∗

 

  -
dvvgvxfxgf

The first cardinal B-spline function is ( )xN1  
introduced before, and cardinal B-splines of 
higher order are defined recursively in terms 
of lower order B-splines by means of the 
convolution operator 

( ) ( )( ) ( )∫ −=∗= −−

1 

0 111 duuxNxNNxN mmm , 

 K,3,2=n
It is interesting to note also that the function 

 is also the probability density func-
tion for the sum of  independent uniform 

 random variables. Therefore, by the 
Central Limit Theorem, as  gets large, the 
spline function 

( )xNm

m
( 1,0 )

m
( )xNm  approaches the prob-

ability density function of a normal random 
variable.  
The second member of the Battle-Lemarié 
family begins with the piecewise linear 
spline . But this function is not or-

thogonal to its integer translates and there-
fore the function  must be “orthogo-
nalized” to give an appropriate scaling func-
tion

( )xN2

( )xN2

( )xN2 . Unfortunately, there is no closed 
form expression for the resulting scaling 
function, but it is given only in terms of its 

Fourier transform ( )

2
cos21

2
sin4

2
3
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2

ωω

ω

π
ω

+
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) . 

The function Φ  is piecewise linear, it is not 
compactly supported, but it does decay expo-
nentially. Mallat gives general formulas for 
constructing scaling functions for the Battle-
Lemarié family, as well as for computing the 
associated filter{ } Z∈kkh . The resulting scaling 
functions will be polynomial splines. An-
other important family of scaling functions is 
the Daubechies family. They are compactly 
supported scaling functions. The derivation 
of this family represents quite a different ap-
proach. Thus, we begin with the filters, and 
then we derive from the filter coefficients the 
scaling function. Obvious, for compactly 
supportedΦ , only finitely many of the ’s 
will be non-zero. Daubechies approach to 
constructing scaling functions begins with 
defining the trigonometric polynomial  

kh
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The scaling functions are written in terms of 
this ( )ω0m  function, and, again, they can 
only be expressed in terms of their Fourier 

transforms ( ) (∏
∞

=

−=Φ
1

0 2
2
1

j

jm ω
π

ω
) ). There 

are several possibilities for the func-
tion ( )ω0m , depending on the number of non-
zero elements in the filter. Clearly, the more 
non-zero filter elements make the smoother 
the resulting scaling functions.  
Estimation of nonparametric regression  
For nonparametric estimation of regression 
function it can us kernel smoothing, orthogo-
nal series estimation and scaling functions 
estimation. This paper will focus on only the 
scaling function version of these methods as 
applied to nonparametric regression, that is 
recovery of a regression function  as in (1). f
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The estimator of regression function  will 
be the projection of raw estimator , defined 
in (3), onto the approximation space . 
Therefore, according to (6), we have 
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 (12). If in 

previous section we discussed the func-
tion , possibly with infinite sup-
port, farther we have the function , evi-

dently square-integrable function on the in-
terval 

∈f ( )R2L
f~

[ ]1,0 . The coefficients , which are 
estimation of “true” coefficients, according 
to (7) are computed by 

kJc ,ˆ

( ) ( )∫ Φ=Φ=
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~,~ˆ duuuffc kJkJkJ  (13). 

Substituting (13) into (12), using (3) and re-
arranging terms, we obtain 
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where (15) ( ) ( ) (∑
∈

ΦΦ=
Zk

kJkJJ xuuxE ,,, )

The sum in (15) is finite because 
( ) [ ]1,0~psup =f  is compact.  defined 

above is a variable kernel. It is not apparent 
that the estimator  depends explicitly on 
the choice of parameter . A relatively large 
value of parameter  gives a narrow 
smoothing window, so the estimate of the 
function at 

JE

Jf̂
J
J

x  depends primarily on data near 
x . Thus, estimators for  large tend to be 
rather wiggly. Conversely, a smaller choice 
of parameter  gives a wider smoothing 
window, resulting in more averaging and a 
smoother estimate. Large values of   give 
estimators with smaller bias, but larger vari-
ance. Selecting a smaller parameter  will 
decrease the variance, but increase the bias. 
The developments above show that this esti-
mator is at the same time both an orthogonal 
series and a kernel estimator. For better em-
phasize of the correlation between the two 
variable 

J

J

J

J

x  and , we need more estima-

tors , both for larger values of , and for 
smaller values of . Therefore, in the begin-
ning choose a scaling functionΦ , a larger 
value  of the parameter  and a smaller 
value  of the same parameter, and after-
wards we shall use the following algorithm: 

y

Jf̂ J
J

1J J
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1) We compute the estimated coeffi-
cients , which appear in writing of esti-

mator , using formula 
(16), according to (13). If 

it is necessary, the integral given in (16) is 

computed on the basis of a numerical method 
(Bessel, Hermite, Simpson, Romberg etc.). 
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2) Using (9) we compute the filter coeffi-

cients ( ) ( )∫ −ΦΦ=
1 

0 
22 dxkxxhk  (17) pos-

sibly on the basis of a numerical method. 
3) For M  large we compute values of the re-
gression function estimator  in the 

points

1
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M
l , according to (12) 
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lf kJ

k
kJJ ,, 111

ˆˆ , Ml ,,1,0 K=  (18) and 

we represent it graphically. 
4) Using (11) we determine the coefficients 
which appear in writing of estimator , 11

ˆ
−Jf

∑ −− =
l

lJklkJ chc ,2,1 11
ˆˆ  (19) 

5) With 11 −J  in place of  we take again 
the proceeding from step 3), until the value 
of this parameter gets equal to .  
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