
54 Informatica Economică vol. 29, no. 1/2025

Roku: A payload Generator Framework for Advanced System Exploitations

Alexandru-Cristian BARDAȘ
Bucharest University of Economic Studies, Romania

alexandru.bardas@csie.ase.ro

In the era of continuous tech advances, generative AI and a constant push towards quantum
technologies, we are still dealing with the constant cat and mouse game between attackers and
defenders in the cyber space. This challenge between these two sides drives them to evolve and
try to outsmart the other. This paper aims to present some of the more complex methodologies
adopted by attackers, to showcase how they would be done, helping defenders in improving
against these age-old threats. I will detail vulnerabilities of the Windows kernel, some of the
most common evasion techniques and attack surfaces, as well as the process of writing rootkits
and ransomwares.
Keywords: Ransomware, Rootkit, Antivirus, APT, CVE
DOI: 10.24818/issn14531305/29.1.2025.05

 Introduction
Given the finite space of defensive mech-
anisms that the Windows operating system

provides, one would assume that antivirus
products have managed to cover all avenues
of attack, virtually rendering an attacker null,
making them rely on the trust of the attacked
user to intervene and interfere with the antivi-
rus to allow the malware to establish itself on
the machine. However, that is not the case,
neither with the Windows system, nor with
antiviruses, since no matter how hard they at-
tempt to block something, there will always be
a way around that barricade. This is best ex-
plained by Greg Hoglund and James Butler
with the following quote: “By playing the part
of an attacker, we are always at an advantage.
As the attacker we must think of only one
thing that the defender didn’t consider. De-
fenders, on the other hand, must think of every
possible thing an attacker might do. The num-
bers work in the attacker’s favour.” [1]. Apart
from antiviruses, there are also other types of
software that aim to protect a system, namely
EDRs (Endpoint Detection & Response).
These EDRs are bound by the same limits as
antivirus software [2] and typically provide
protection for business clients, thus I won’t
tackle them in this paper.
Given the evolution of the internet, attackers
have also constantly evolved alongside it,
making malware as accessible as ever.

Malicious code generation tools are easily
found on the internet [3] and they require little
to no experience for somebody to be able to
use them and generate a payload that will steal
someone’s data, for example. Information
stealers are not the topic of this paper, as anti-
virus software are very well equipped to han-
dle them, mostly by blocking the access for
non-legitimate applications to important files,
such as cookies and digital wallets. Apart
from information stealers, there are other clas-
ses of malware, some of which I will tackle in
this paper.
In the words of Greg Hoglund and James But-
ler, “a rootkit is a set of programs and code
that allows a permanent, or consistent, unde-
tectable presence on a computer” [1]. The
word “rootkit” is a compound word, being de-
rived from two different words: kit, a set of
programs that maintain access on a system,
and root, the most privileged user on a system.
Therefore, a rootkit relies on stealth measures
to maintain its persistence on an infected ma-
chine.
Another class of malware I will tackle is ran-
somware. It is best defined by Alexandre
Gazet as “A ransomware is a kind of malware
which demands payment in exchange for a
stolen functionality. It has been built upon the
two words ransom and malware. Most wide-
spread ransomwares make an intensive use of
file encryption as an extortion mean” [4].

1

Informatica Economică vol. 29, no. 1/2025 55

The classes of malware have been commonly
used by APT (Advanced Persistent Threat)
groups as they provide the most gains. For
ransomwares, threat actors will typically em-
ploy various obfuscation and packing tech-
niques to try to evade detection and reach their
final goal: infect a machine and demand ran-
som for the decryption of the files. This
method generates direct monetary gains for
said threat actors, and thus it is one of the pre-
ferred methods of infection for a wide variety
of APT groups (see the abundant number of
attacks using this type of malware in cases
such as [5], [6], [7], [8], [9] and [10]). On the
other hand, rootkits are a more sensitive area,
as they require a complex planning stage and
an even more complex execution stage. In the
context of the Windows operating system,
rootkits are mostly masquerading as device
drivers. This, in and of itself, constitutes an
additional defensive barrier for threat actors to
overcome. Adding to that, antivirus software
closely monitors the user-land [11], but it
monitors the kernel-land [11] even more.
These concepts aren’t part of the goal of this
paper; thus, I won’t detail them, leaving these
concepts to be studied individually by the
reader. One of the most famous examples of
rootkits employed by APT groups is the Fud-
Module rootkit, used by the infamous Lazarus
group [12] [13].
The purpose of this paper is to detail the crea-
tion of such viruses, common techniques and
evasion methods, all wrapped in a framework
to easily generate them. To assert the quality
of these viruses, they will be put up to the test
against various antivirus software.

2 Literature review
In recent years, technological advances and
access to state-of-the-art machinery have al-
lowed malware authors to achieve big im-
provements, having malware researchers al-
ways on the hunt for newer techniques and
ways to cover them. This “cat and mouse”
game is at the heart of our current cyber-secu-
rity status and will remain as such for a long
amount of time.
The rise of payload generator frameworks al-
lows for basically everyone, with or without

any technical knowledge, to be able to launch
a cyber-attack, albeit at a small scale, against
anyone in the world. These frameworks are
mostly for RATs (Remote Access Trojans)
and information stealers, leaving the more ad-
vanced malware pieces to be manually crafted
or sold to the highest bidder on the dark web.
In this section, I will review a few studies that
have attempted to test antivirus software on
more advanced payloads. These studies will
help in better understanding how antivirus
software tackles some of these threats, and
their obtained results will be used for compar-
isons.
Going in chronological order, the first study is
from Patryk and Murray [14], which utilized
a set of 7 well known malware samples and
tested them against the top 10 antivirus soft-
ware at that time. Given that the malware
strains were already known, the results are
mostly satisfying.
Moving further, there is the study conducted
by Devine and Richaud [15], where they de-
vised custom payloads, ranging from simple
to complex. They tested a wide variety of an-
tivirus software, providing results that were
subpar, to say the least. The test consisted of
keylogger payloads, code injection and net-
work access payloads, as well as different vul-
nerabilities and kernel-mode malicious appli-
cations.
Next on the list is Sauder’s research [16] on
various encoding techniques applied on shell-
code, generating insightful results on how
these techniques affect the antivirus’s detec-
tions as well as strengthening the comprehen-
sion on how antivirus software handles some
of these threats.
Lastly, and possibly the most interesting, there
is GAUDESI’s research [17], which creates a
packer and uses it on various malware and
clean samples, all for the sake of testing anti-
virus’s heuristic detections, and thus provides
valuable understanding of the antivirus’s in-
ner workings.

3 Methodology
For this paper, I have constructed a custom
payload generator framework that allows us-
ers to build malware in a few simple steps.

56 Informatica Economică vol. 29, no. 1/2025

The framework is a simple program written in
Python, designed to act as a TCP/HTTP server
and just compile programs based on the input
given by the user. The framework will be able
to generate various ransomwares, a rootkit
replica of FudModule and some loaders.
First, there is the Python ransomware. It is a
very simple, “script-kiddie”-like implementa-
tion of ransomware, which is packed using
PyInstaller. The payload will check all drive
letters, and when it finds a valid drive, it will
start and recursively traverse it and encrypt
files with a certain extension. The encryption
is done in all cases using AES-256-ECB. The
encryption and traversal routines are depicted
in Figure 1. Second, there is a simple C++ ran-
somware. This ransomware abides by the
same principles as the Python ransomware. It
recursively traverses all drive letters and en-
crypts found drives. It will skip going into
Program Files, Program Files (x86), Pro-
gramData and Windows folders, for perfor-
mance reasons and as to not encrypt sensitive

files for the OS. It uses the BCrypt Windows
API for encrypting data.

Fig. 1. Code snippet from the Python ran-
somware showcasing the encryption routine

As evasion techniques, it uses dynamic link-
ing of Windows API functions, as well as
string obfuscation using a simple algorithm
(constructing the string letter by letter via sim-
ple operations of shifting and/or addition or
subtraction). Figure 2 presents a snippet of the
extension checking function, employing
string obfuscation mechanisms.

Fig. 2. C++ code snippet showcasing the string obfuscation algorithm in the extension check-

ing function

Third, there is the advanced C++ ransomware.
This payload was built to be complex in nature
and utilize advanced malware development
techniques. It is built using the Windows API
and still uses the BCrypt API for encryption.
As evasion techniques, it uses string encryp-
tion via XOR, dynamic linking via API hash-
ing with custom GetProcAddress and Get-
ModuleHandle functions, indirect system

calls using an implementation of HellsHall,
unhooking of all used DLLs by replacing
them with clean copies from the \KnownDlls\
directory, argument spoofing for masking the
deletion of shadow copies via cmd.exe,
checks for debuggers and checks for VM-
like/sandbox environments. Figure 3 presents
parts of some of the previously mentioned
functions.

Informatica Economică vol. 29, no. 1/2025 57

Fig. 3. C++ code snippet showcasing advanced techniques such as API hashing and indirect

syscalls in the encryption routine and debugger check’s function

The 3 payloads have another variant of them-
selves where they are coupled with device fin-
gerprinting and Chrome data stealing capabil-
ities. These capabilities allow the payloads to
gather information about the current system
(CPU count, total memory, PC name, OS ver-
sion) as well as steal cookies, login data and
credit cards information from the Chrome
browser. It does that by obtaining the master
key and unprotecting it using the Windows
Data Protection API (DPAPI) on the infected
machine, then decrypts the cookies, login data

and credit cards information by interacting
with the databases via SQLite connections.
Figure 4 displays a portion of the key unpro-
tecting routine. Furthermore, there are two
loaders which can be used to dynamically load
PE files. One loader mimics the process that
the Windows Image Loader does when load-
ing a PE file, and the other loader represents a
combination between Process Ghosting and
Process Hollowing injection techniques.

Fig. 4. C++ code snippet displaying the unprotecting of the Chrome encryption key

Lastly, there is the C++ rootkit. It is a replica
of the latest FudModule [13] rootkit of the

Lazarus group. It exploits CVE-2024-21338
to obtain a read/write primitive of kernel

58 Informatica Economică vol. 29, no. 1/2025

memory, and from there it uses Direct Kernel
Object Manipulation (DKOM) techniques to
disable internal kernel callbacks used by the
Windows OS. These callbacks allow for any
monitoring or security software to be notified
upon important events such as a network
packet being sent, a process being created and
so on. With that, they can instantly check the
event and ensure that it is legitimate, hence,

disabling them would thwart their analysis.
The vulnerability resides in the exposure of a
vulnerable IOCTL from the AppLocker driver
(appid.sys), which allows a user to supply two
(kernel) pointers, together with some control
over the first argument of the callback [13].
Figure 5 displays a portion of the source code
obtained from decompiling the vulnerable
functions inside the mentioned driver.

Fig. 5. Decompilation snippet of the vulnerable function in appid.sys

This allows a threat actor to craft a malicious
DeviceIoControl call where a kernel gadget is
used for arbitrary modification in the kernel
memory space, allowing the modification of
PreviousMode, thus enabling calls to

NtWriteProcessMemory to kernel memory to
succeed [13]. Figure 6 depicts the usage of the
PreviousMode field in the kernel routine for
reading and writing to a process’s memory.

Fig. 6. Decompilation snippet of nt!MiReadWriteVirtualMemory, showcasing the check of

the PreviousMode field

It is also coupled with various evasion tech-
niques, such as unhooking of system DLLs,
API hashing, string obfuscation and encryp-
tion, debugger and sandbox checks and usage
of native syscalls where possible. After ex-
ploiting the vulnerability and disabling inter-
nal defences of the Windows operating sys-
tem, it then acts as a reverse shell, executing
commands via PowerShell with spoofed argu-
ments, also providing AMSI (Anti-Malware

Scan Interface) and WLDP (Windows Lock
Down Policy) bypasses with simple byte re-
placements. The two systems represent some
other Windows defensive mechanisms, that
allow further scanning of scripts and .NET ex-
ecutables by usage of custom antivirus soft-
ware or Windows’ own, Windows Defender.
Figure 7 presents the routine for disabling
driver image verification callbacks inside the
Windows kernel, from user-mode.

Informatica Economică vol. 29, no. 1/2025 59

Fig. 7. C++ code snippet for disabling driver verification callbacks in the kernel

The AMSI and WLDP bypasses were inspired
from maldev academy [18], while the CVE
implementation was inspired from hakaioff-
sec’s research [19].
All payloads can be compiled either as EXEs
or DLLs (where possible) with or without ex-
ports and for both architectures (32-bit or 64-
bit where possible). Also, as a note, a connec-
tion failure will terminate the payload.
4 Results
Figure 8 displays the Process Monitor tool, us-
ing it to showcase the process tree created
upon running a ransomware payload, which

uses argument spoofing to hide its real argu-
ments when deleting shadow copies.
In this section, I will present how the previ-
ously described payloads fared against differ-
ent antivirus software, by uploading them to
virustotal.com and by testing the payloads in
a VM with some antivirus software installed.
The files tested will all be compiled as EXEs,
with all evasion techniques enabled.
First off, some results from running the pay-
loads, displaying their effectiveness and capa-
bilities.

Fig. 8. Process Monitor output for deleting shadow copies using argument spoofing

60 Informatica Economică vol. 29, no. 1/2025

Figure 9 displays the output of the DCMB
tool, which shows that after running the root-
kit payload, the internal Windows callbacks

get modified and point to dummy values in-
stead of their actual values.

Fig. 9. DCMB (tool for viewing Windows kernel callbacks) output after running the C++

rootkit, showcasing that each callback has the same address (a dummy one)

Secondly, we have the VirusTotal and real an-
tivirus test results. The used versions were
(latest as of the time of testing – 05.06.2024):
AVAST 24.5.6116 (build 24.5.9153.843), vi-
rus definition version 240605-2; F-Secure
19.4; Avira 1.1.102.766, SDK 1.0.2405.2972,
virus definition version 8.20.26.184; Bitde-
fender build 27.0.38.163.

Table 1 displays the results of scanning vari-
ous payloads with the engines available in the
VirusTotal platform, whereas tables 2 and 3
show the results of running some payloads in-
side an isolated environment with the pro-
vided antivirus software installed.

Informatica Economică vol. 29, no. 1/2025 61

Table 1. VirusTotal results for the payloads
Payload Detections Date
c_sim_rans 4/73 11.05.2024
c_sim_rans_steal 1/72 11.05.2024
py_sim_rans 6/71 07.05.2024
py_sim_rans_steal 19/72 09.05.2024
c_adv_rans 1/72 14.05.2024
c_adv_rans_steal 2/73 11.05.2024
c_rtk 1/74 29.05.2024
GH py_sim_rans_steal 3/71 16.05.2024
Loader c_adv_rtk 7/72 29.05.2024

Table 2. Avast and F-Secure results

Payload AVAST F-Secure
c_sim_rans CLN CLN
c_adv_rans IDP.Generic (after

encryption)
CLN

py_sim_rans CLN Trojan:W32CryptoRan-
somR.C!DeepGuard (after encryp-
tion)

c_sim_rans_steal CLN CLN
c_adv_rans_steal CLN CLN
py_sim_rans_steal CLN Trojan:W32CryptoRan-

somR.C!DeepGuard (after encryp-
tion)

Loader
c_adv_rans_steal

CLN CLN

GH
c_adv_rans_steal

Win32:Dh-A
[Heur]

TR/AD.Nekark.4cc01f

c_adv_rtk CLN CLN

Table 3. Avira and Bitdefender results
Payload Avira Bitdefender
c_sim_rans HEUR/APC CLN
c_adv_rans HEUR/APC CLN
py_sim_rans HEUR/APC Atc4.Detection
c_sim_rans_steal HEUR/APC CLN
c_adv_rans_steal HEUR/APC CLN
py_sim_rans_steal HEUR/APC Atc4.Detection

(data exfiltration
succeeded)

Loader
c_adv_rans_steal

HEUR/APC CLN

GH c_adv_rans_steal TR/AD.Nekark.4cc01
f

CLN

c_adv_rtk HEUR/APC.AVAHC CLN

The AVAST, F-Secure and Bitdefender anti-
viruses have anti-ransomware protection

(Avira does as well, but for the paid version),
which for two out of the three antiviruses

62 Informatica Economică vol. 29, no. 1/2025

managed to identify and block all ransomware
attacks, even the ones custom loaded (only the
F-Secure one failed). However, the results in
the table are the ones with the ransomware
protection off, as to see whether the files are
detected by themselves and not blocked by ad-
ditional measures.
The first part of the discussion will focus on
the VirusTotal results, and the second one will
discuss the real tests against antivirus soft-
ware.
Looking at the overall results, they seem to
unveil a worrisome picture of the current state
of antivirus software. However, that is not the
full truth and would be based solely on static
analyzers and using slightly outdated versions
of the software, with custom settings. The
static analyzers base themselves solely on
static byte patterns which were observed be-
fore and therefore would fail when presented
with not so common techniques which aren’t
covered specifically or never seen variations
of some specific byte patterns. Mostly, the de-
tections are not very specific, thus they are not
very indicative of the real coverage.
Ergo, these results only serve mostly as a clue
to whether the malware or technique was ob-
served before or not, rather than the full detec-
tion capabilities of antivirus software.
Moving on to the real tests, which help un-
cover the bigger picture and, whilst not com-
pletely undermining the previous results, they
present a slightly better status of the current
antivirus state. Avira’s perfect score show-
cases just how powerful heuristic/behavioral
detections can be in detecting unseen threats.
Even for Avast’s IDP and Bitdefender’s
ATC4, they have managed to identify some
ransomware threats based on behavior, which
is quite a powerful mechanism, given that
most commercial ransomware doesn’t use the
BCrypt API and relies on custom implemen-
tations of encryption algorithms.
While static analysis is a great tool for detect-
ing malware, the VirusTotal results show-
cased that the malware of today may easily
overcome it, thus shifting the focus towards
either more advanced static analysis ways or
behavioral techniques which protect before
any harm is done.

These results seem to align with the reviewed
research, as they showcase that behavioral de-
tections and heuristics are the way forward,
and that slightly more advanced payloads than
what was observed before might sometimes
trick antivirus software and successfully in-
fect machines.
All in all, these results present a rather subpar
situation, leaving some room for improve-
ment.

5 Conclusion
The purpose of the current study was to pro-
vide a framework for generating some ad-
vanced payloads, together with providing
some evasion techniques.
The paper presents how ransomwares and
rootkits are created, showcasing some evasion
techniques and some of the details of the Win-
dows operating system such as thread running
modes, the Windows API, a CVE, some prop-
erties related to threads and kernel callbacks.
By testing the generated payloads against var-
ious antivirus software, both in VirusTotal
and in a VM environment, various gaps in the
current detection mechanisms were observed
and detailed.

References
[1] H. Greg and B. Jamie, Rootkits: Subvert-

ing the Windows kernel, Addison-Wesley
Professional, 2005.

[2] C. Vella, “Reversing & bypassing EDRs,”
in CrikeyCon, 2019.

[3] S. Aniket, T. Animesh, J. Sagar and G. Ra-
jeshwari, “A Survey on Rootkit Tech-
niques,” IJIRSET, vol. 10, no. 5, 2021.

[4] G. Alexandre, “Comparative analysis of
various ransomware virii,” Journal in
computer virology, vol. 6, pp. 77-90,
2010.

[5] “DJVU: The Ransomware That Seems
Strangely Familiar…,” 29 09 2022.
[Online]. Available: https://blogs.black-
berry.com/en/2022/09/djvu-the-ransom-
ware-that-seems-strangely-familiar. [Ac-
cessed 18 03 2024].

[6] S. Karan and H. Shaun, “NotPetya Tech-
nical Analysis – A Triple Threat: File En-
cryption, MFT Encryption, Credential

Informatica Economică vol. 29, no. 1/2025 63

Theft,” 29 06 2017. [Online]. Available:
https://www.crowdstrike.com/blog/petrw
rap-ransomware-technical-analysis-triple-
threat-file-encryption-mft-encryption-cre-
dential-theft/. [Accessed 18 03 2024].

[7] V. Guilherme, “A deep dive into Phobos
ransomware, recently deployed by 8Base
group,” 17 11 2023. [Online]. Available:
https://blog.talosintelligence.com/deep-
dive-into-phobos-ransomware/. [Ac-
cessed 18 03 2024].

[8] N. A. Muhammad, “LockBit 3.0 Ransom-
ware Analysis and Config Extraction,” 17
09 2023. [Online]. Available: https://me-
dium.com/@mnaveed.akbar92/lockbit-
ransomware-analysis-19a97dead613.
[Accessed 18 03 2024].

[9] “New Ransomware Family Identified:
LokiLocker RaaS Targets Windows Sys-
tems,” 16 03 2022. [Online]. Available:
https://blogs.black-
berry.com/en/2022/03/lokilocker-ransom-
ware. [Accessed 18 03 2024].

[10] A. Waleed and H. Sarvotham, “A
Comprehensive Analysis of WannaCry:
Technical Analysis, Reverse Engineering,
and Motivation,” [Online]. Available:
https://people-
ece.vse.gmu.edu/coursewebpages/ECE/E
CE646/F19/project/F18_presentations/Se
ssion_III/Session_III_Report_3.pdf. [Ac-
cessed 18 03 2024].

[11] Y. Pavel, I. Alex, R. Mark E. and S.
David A., Windows Internals, Part 1-Sys-
tem architecture, processes, threads,
memory management, and more, 7th

Edition, Microsoft Press, 2017.
[12] K. Peter and H. Matěj, “LAZARUS &

BYOVD: EVIL TO THE CORE,” in Vi-
rus Bulletin, 2022.

[13] V. Jan, “Lazarus and the FudModule
Rootkit: Beyond BYOVD with an Admin-
to-Kernel Zero-Day,” 28 02 2024.
[Online]. Available: https://de-
coded.avast.io/janvojtesek/lazarus-and-
the-fudmodule-rootkit-beyond-byovd-
with-an-admin-to-kernel-zero-day/. [Ac-
cessed 18 03 2024].

[14] P. Szewczyk and M. Brand, “Malware
Detection and Removal: An examination
of personal antivirus software,” in Aus-
tralian Digital Forensics Conference,
2008.

[15] C. Devine and N. Richaud, “A study
of antivirus’ response to unknown
threats.,” Proceedings of EICAR, 2009.

[16] D. Sauder, “Why antivirus software
fails,” Magdeburger Journal zur Sicher-
heitsforschung, no. 10, pp. 540-546, 2015.

[17] M. Gaudesi and e. al., “Challenging
antivirus through evolutionary malware
obfuscation,” in Applications of Evolu-
tionary Computation: 19th European
Conference, 2016.

[18] mr.d0x, NUL0x4C and 5pider,
“Maldev Academy,” [Online]. Available:
https://maldevacademy.com/. [Accessed
01 06 2024].

[19] hakaioffsec, “CVE-2024-21338,”
[Online]. Available:
https://github.com/hakaioffsec/CVE-
2024-21338/tree/main.

Alexandru-Cristian BARDAȘ is currently a doctoral student at the Bucharest
University of Economic Studies, Romania. He graduated from Babes-Bolyai
University with a bachelor’s in mathematics and computer science and re-
cently graduated from ASE with a master’s in IT&C Security. He is interested
in cybersecurity and is currently working at Gen Digital (initially at Avira, then
moved to Avast) as a Threat Analysis Engineer, since 2021. His interests in

the security zone lie in malware analysis, Windows internals, threat and vulnerability research
and detection engineering. He helped discover a malware family which led to a technical blog-
post on Avira’s website and had a talk at DefCamp 2024 related to the ClearFake APT.

