
Informatica Economică vol. 29, no. 1/2025 29

A Framework for Automated Digital Media Asset Acquisition using Cloud

Adrian VINTILĂ, Constanța-Nicoleta BODEA
Bucharest University of Economic Studies, Romania

adi.vint@gmail.com, bodea@ase.ro

This paper presents a cloud-based automated media asset acquisition framework designed to
enhance the efficiency and speed of media ingest workflows in broadcast environments. Tradi-
tional media ingestion, particularly in news production, often involves manual processes such
as physical file transfers, operator intervention, and transcoding delays, which can slow down
content availability. Our proposed framework leverages cloud storage, mobile journalism tech-
nology, and automation scripts to eliminate these inefficiencies. By developing a dedicated mo-
bile application, integrating cloud storage with automated monitoring and downloading mech-
anisms, and employing a local watchfolder-based transcoding system, the workflow minimizes
human intervention and significantly reduces media ingest time. We conducted a series of com-
parative real-world experiments evaluating the new framework against conventional workflows
in a news television station, measuring ingest time and resource utilization. The results demon-
strate that our automated solution outperforms traditional and alternative cloud-based meth-
ods, reducing ingest time by up to fifteen times while eliminating the need for additional per-
sonnel. These findings highlight the potential of automation and cloud computing to optimize
media workflows, ultimately improving production speed and operational efficiency which can
also lead to potential economic benefits.
Keywords: Cloud, Automation, Media asset acquisition, Ingest, Broadcast
DOI: 10.24818/issn14531305/29.1.2025.03

 Introduction
This paper proposes an efficient frame-

work for automated media asset acquisition
using cloud technology and provides an ex-
perimental analysis demonstrating its ad-
vantages over existing models. Media asset
acquisition, commonly referred to as ingest in
the broadcast industry, is the process of bring-
ing new media content into a broadcast facili-
ty's media ecosystem. It serves as the funda-
mental entry point for all content in broadcast
operations. Whether managing a television
station, running a streaming platform, operat-
ing a production company, or creating video
content, media ingest represents the critical
stage where content first enters the media
workflow system. Over time, this process has
evolved significantly, transitioning from
physical tape delivery to modern digital work-
flows. This paper focuses on broadcast envi-
ronments, where ingest involves capturing,
transcoding, and storing media content within
a facility's Media Asset Management (MAM)
system. This includes handling multiple for-
mats and sources, such as satellite feeds, live

camera or mobile phone feeds, file-based con-
tent delivered through digital means, live
streaming, and IP streams from news agen-
cies, among others. Several operations typi-
cally occur during the ingest process. Incom-
ing content must be transcoded into the facil-
ity’s preferred video format. Once transcoded,
the media is stored in the MAM’s primary
storage for further processing or live broad-
casting. In most cases, one or more ingest op-
erators manage this process, handling tasks
such as recording, transcoding, and storage.
Given the variety of content sources available
to broadcasters, different workflows are tai-
lored to the technical capabilities of each fa-
cility. One universally present ingest work-
flow involves filming with a video camera or
a mobile phone, transferring the video footage
via a memory card or USB connection, and
then copying it to a temporary location where
it is transcoded before being imported to the
MAM. Since this paper aims to present and
test an automated framework focused on
speed and efficiency, the primary focus will
be on mobile phone-based filming. Mobile

1

30 Informatica Economică vol. 29, no. 1/2025

phone camera technology has advanced dra-
matically in recent years, featuring enhance-
ments such as image stabilization, high dy-
namic range (HDR), multiple lenses, and AI-
driven video processing algorithms [1]. These
algorithms improve various aspects of video
quality, such as noise reduction, color en-
hancement, and image focus optimization us-
ing object recognition. Additionally, mobile
phone cameras are significantly more afford-
able than traditional professional cameras, of-
fering an excellent price-performance ratio
and greater portability. These advancements
have led to the rapid adoption of mobile jour-
nalism (MoJo) in the media industry [2].
MoJo refers to a growing trend where journal-
ists, particularly reporters, use smartphones
equipped with lightweight accessories, such
as portable microphones, compact tripods,
and small lighting gear, to capture high-qual-
ity video footage. Unlike traditional work-
flows, MoJo eliminates the need for a dedi-
cated camera operator or bulky production
equipment, enabling a more agile and efficient
filming process. This paper will examine the
current ingest workflows of television stations
utilizing the MoJo technique and propose an
automated media ingest framework that lever-
ages cloud technology. In this framework, me-
dia footage filmed on a mobile phone is up-
loaded to the cloud, automatically down-
loaded to a local temporary storage location,
transcoded, and imported to the MAM, en-
tirely without human intervention. Once the
framework is established, we will design an
ingest workflow for reporters, enabling them
to film events and seamlessly send video foot-
age to the MAM using a mobile application.
To validate our approach, we will conduct
real-world experiments comparing existing
workflows of a modern news television sta-
tion with our proposed framework and ana-
lyze the results. The goal is to enhance an al-
ready efficient filming model by further accel-
erating the ingest process. Speed is a critical
factor in broadcasting, particularly in news
environments where rapid turnaround times
are essential. Increased automation, improved
efficiency, and reduced resource requirements
could also yield economic benefits for

broadcasters.
This paper is structured as follows: Following
the introduction, we present a review of exist-
ing literature on the topic. The third section
outlines the Methodology, detailing the steps
necessary to build the framework and to con-
duct the experiments. Next, we describe the
technical architecture of the framework in
depth, and we’ll design the workflow. In the
fifth section, we describe the experiments.
Next, we’ll present and discuss the results of
the experiments conducted. Finally, the paper
concludes with the Conclusions and Refer-
ences sections.

2 Literature review
Media Asset Management (MAM) is an im-
portant technology that is rapidly changing the
media, entertainment, and content industries.
It enables organizations to manage and dis-
tribute digital assets more effectively. As
companies expand into digital platforms,
MAM is becoming an essential tool for sur-
vival and growth in a competitive digital land-
scape [3]. It is used in various industries: film,
internet & IT, broadcasting or corporate and
government sectors. Regardless of the indus-
try in which it is implemented, every MAM
system must be capable of acquiring media as-
sets. Also called media ingest, it’s the first
step of every MAM system. The ingest pro-
cess ensures that media assets are acquired,
validated, and structured efficiently enabling
downstream workflows such as content man-
agement and distribution [4]. Our goal in this
paper is to introduce a more efficient ingest
approach by automating manual tasks in tradi-
tional workflows and leveraging cloud tech-
nology. Automation continues to evolve in all
fields to optimize efficiency, speed, flexibil-
ity, and sustainability of production systems
leading to increased productivity and cost re-
duction [5],[6],[7],[8],[9]. In this paper we are
focusing on cloud-based workflow automa-
tion, which has use cases in the media and
broadcasting industries such as automated
video encoding, metadata tagging, and con-
tent distribution across streaming platforms
[10]. Our proposed framework uses cloud and
on-premises resources. Both have their merits,

Informatica Economică vol. 29, no. 1/2025 31

and the best choice depends on organizational
needs, cost considerations, and IT capabilities
[11]. Public clouds (e.g., AWS, Azure,
Google Cloud) provide cost efficiency and
scalability but raise security and data owner-
ship concerns [12]. We opted for a public
cloud solution as its cost-effectiveness and
scalability advantages outweighed potential
security considerations in our analysis. Cloud
computing will facilitate mobile, remote, and
collaborative journalism, minimizing reliance
on physical newsrooms. As journalism rapidly
evolves with advancements in artificial intel-
ligence (AI), cloud computing, and automa-
tion, media organizations must make strategic
investments in these technologies to remain
competitive [13]. Our framework uses a hy-
brid cloud computing approach. Hybrid cloud
computing is basically a combination of cloud
computing with on-premises resources to pro-
vide work portability, load distribution, and
security [14]. Hybrid cloud computing is
transforming the broadcasting industry by en-
abling media companies to balance the need
for high-performance on-premises infrastruc-
ture with the scalability and flexibility of
cloud services. Traditionally, broadcasters re-
lied on fully on-premises setups for produc-
tion, asset management, and distribution.
However, with the increasing demand for re-
mote collaboration, cloud-based workflows
and hybrid cloud architectures have become
essential. One emerging trend in the field of
journalism is Mobile Journalism (MoJo), a
new form of multimedia newsgathering and
storytelling that enables journalists to docu-
ment, edit and share news using small, net-
work connected devices like smartphones
[15]. MoJo benefits greatly from cloud inte-
gration, as it provides a scalable, flexible, and

efficient solution for mobile journalists work-
ing in remote or dynamic environments [16].
This is why we selected this method of news
gathering when designing our experiments as
digital immediacy has transformed journal-
istic workflows, emphasizing the pressure to
update stories continuously. Media outlets
such as television and digital media compete
for breaking news dominance, leading to
rapid, incremental updates that often prioritize
speed over depth [17]. News strategies in dig-
ital journalism are driven by competition, au-
dience retention, and economic survival.
Therefore, in the upcoming chapters, we intro-
duce and evaluate a framework aimed at
speeding up the essential process of media as-
set acquisition while optimizing resource uti-
lization.

3 Methodology
This section describes our research methodol-
ogy. First, we develop the framework's foun-
dational processes, documenting the work-
flow, then conduct experimental testing, and
finally analyze and discuss the obtained re-
sults. Figure 1 shows the research methodol-
ogy.
The development of the automated ingest
framework involves work across cloud and
on-premises environments, including the cre-
ation and deployment of a mobile application.
Once the framework is established, we will
design an automated workflow tailored to suit
this framework. Our real-world experimental
testing will compare existing workflows of a
news television station with the proposed au-
tomated cloud-based approach. Following the
experiments, we will generate a performance
report and analyze the findings.

32 Informatica Economică vol. 29, no. 1/2025

Fig. 1. Research methodology

Subsequent chapters will provide detailed de-
scription of each development step.

4 Cloud-based automated digital media ac-
quisition framework
This section provides a comprehensive over-
view of the cloud-based automated media ac-
quisition framework architecture, detailing
each development stage. Our implementation
process began with establishing a cloud envi-
ronment and configuring cloud storage re-
sources. We then developed a mobile applica-
tion and installed it on the MoJo mobile
phone. Using a cloud Message Queuing Ser-
vice, we created a monitoring script to track
files uploaded to the cloud and download
them to temporary local storage. Subse-
quently, we designed a script to continuously
monitor the local folder, automatically trans-
coding and transferring new files to the Media
Asset Management system (MAM) as they ar-
rive.

4.1 Setting up cloud infrastructure and the
cloud storage resource
We chose Amazon Web Services (AWS) as
the cloud computing platform because it is
widely adopted in the media industry, pro-
vides an extensive suite of services, and

benefits from a robust ecosystem, strong sup-
port, and thorough documentation. Within the
AWS infrastructure, we set up a dedicated S3
bucket, as the cloud storage resource. We then
proceeded to configure its access permissions,
creating a custom bucket policy that provides
access to the objects stored in the bucket to
only one user. The user, called “android-s3-
uploader”, was created using the Identity and
Access Management (IAM), a core service of
AWS. After the user was created, we defined
the permissions for this user required to access
the S3 bucket so that we can have the creden-
tials needed for the files upload. The S3
bucket is the cloud location where the report-
ers are uploading the filmed media assets (vid-
eos).

4.2 Developing the mobile phone applica-
tion
We developed an Android app, called “Me-
diaUpload”, using Android Studio. We used
the Android operating system as it is a more
familiar development environment for us, an
iPhone app would work the same way. It is a
simple application with just an upload button,
as we did not pay too much attention to the
Graphical User Interface (GUI) design as it is
not relevant for the scope of this paper. The

Informatica Economică vol. 29, no. 1/2025 33

simple it is, the better. The app allows the re-
porter to just push a button, select a video
from the mobile phone internal gallery and the
selected video file is uploaded to the cloud au-
tomatically, more specifically, to our S3
bucket. In the Android Studio project, we in-
cluded the AWS SDK for Android's S3

(Simple Storage Service) library that allows
our application to interact with AWS S3 buck-
ets and the AWS Mobile Client library which
provides authentication and authorization
mechanisms for AWS services.

implementation (libs.amazonaws.aws.android.sdk.s3)
implementation (libs.amazonaws.aws.android.sdk.mobile.client)

In the MainActivity section of the Android
Studio project we defined the credentials, us-
ing the access key and secret key generated by

the IAM service, and we implemented the up-
load function and button.

Fig. 2. Android Mobile Phone Application

Figure 2 shows the Graphical User Interface
of our application. After pressing the “Upload
video" button, the user will be prompted to
choose a video from the mobile phone’s video
gallery. The selected video is uploaded into
the S3 bucket. In “AndroidManifest.xml”, we

granted the MediaUpload app permissions to
access the internet and to access video files
from the local storage. After the file is suc-
cessfully uploaded, the application shows a
confirmation pop-up message.

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.READ_MEDIA_VIDEO"/>

34 Informatica Economică vol. 29, no. 1/2025

This is the first stage of the automated media
ingest process, when a reporter captures video
using a mobile phone that is part of the MoJo
kit. Afterwards, the reporter launches the Me-
diaUpload application to transfer the recorded
footage to the cloud. The sole requirement for
this upload is that the mobile phone has an ac-
tive internet connection, which can be estab-
lished either through cellular data (GSM) or a
wireless network (Wi-Fi).

4.3 App installation for the MoJo workflow
As this mobile application is not intended for
commercial use and not meant to be public,
we have opted not to register it with the
Google Play Store, the official digital distribu-
tion platform for Android devices. Thus, using
Android Studio, we manually compiled the
“MediaUpload” project into an Android Pack-
age Kit (APK). We then transferred this APK
file to the mobile device via USB connection
and installed it through the device's pre-in-
stalled File Manager application, bypassing
the traditional app store distribution method.
After the successful installation, we ran a few
upload tests to verify that everything works
correctly, and to confirm that the selected files
are being uploaded to the AWS S3 bucket.

4.4 Automated cloud monitoring and file
download script
Once the MediaUpload mobile phone applica-
tion has been developed and installed, and the
media was being uploaded to the cloud, we
proceeded to work on a system that can locally
download, on premise, every file uploaded to
the cloud, immediately after the upload was
completed. This meant that we had to config-
ure the S3 bucket to send a notification each
time a file is received and a cloud queuing
message service, that would store messages
sent by the S3 service when a file is uploaded
to the cloud. In our case, we used Amazon
Simple Queue Service (SQS) to receive an
event notification when a new object is cre-
ated in the bucket, like a file upload would do.
Next, we created a Python script that auto-
mates the process of downloading files from
the Amazon S3 bucket whenever new files are
uploaded. It achieves this by polling the SQS

queue to retrieve the event notifications cre-
ated as the files are being uploaded.
The configuration of SQS was straightfor-
ward:
• We created a queue called, very generic,

“MyQueue”;
• Set the “Delivery delay” to “0”, so that

messages would be added to the queue im-
mediately;

• Using the “Access policy” we added a pol-
icy to ensure that the S3 bucket has per-
mission to send messages to our SQS
queue.

We also had to configure the S3 bucket to send
event notifications to our SQS queue when-
ever new files are uploaded:
• In the “Properties” section of our S3

bucket we created an event notification;
• We configured the type of event as “All

object create events”;
• In the “Destination” section, we pointed to

our SQS queue by specifying its Amazon
Resource Name (ARN).

At this stage the cloud configuration is com-
plete. We can accept video files uploaded
from the mobile phone, using our application,
and after the file is uploaded into the S3
bucket, an event notification is created.
Next, we designed a Python script, that would
run on-premises, on a dedicated server. This
script listens to event notifications from the
SQS queue and downloads locally the files as
soon as they are uploaded to the cloud. When
a file is uploaded to an S3 bucket, the S3 ser-
vice is configured to generate an event notifi-
cation. This notification contains metadata
about the upload, such as the name of the
bucket and the object key (file name) of the
uploaded file. S3 sends this notification to an
Amazon SQS queue, where it is stored. The
script begins by importing several libraries
needed for its functionality. We used the
“boto3” library, the official Python SDK for
AWS, to interact with both the SQS and S3
services. “boto3” abstracts the complexities of
AWS API calls, allowing us to work with
AWS services using Python code. In addition
to “boto3”, the script imports other libraries
for handling JSON data (json), file operations
(os), time-based delays (time), and URL

Informatica Economică vol. 29, no. 1/2025 35

decoding (unquote_plus). The script defines
two AWS clients, one for interacting with
SQS and the other for S3. These clients are
created using the “boto3.client” function,
specifying the AWS region where the re-
sources, queue and bucket, are located. The
script also includes the URL of the SQS
queue, “queue_url”, which will be polled for
incoming messages. Next, the
“poll_sqs_queue” function is defined to han-
dle the polling process. It is an infinite loop
that continuously checks the SQS queue for
new messages. The function begins by calling
the “receive_message” method of the SQS cli-
ent. This method retrieves from the queue up

to 10 messages at a time, waiting for up to 20
seconds, the maximum allowable value for
new messages to arrive if the queue is empty.
Having this 20 seconds delay, unnecessary re-
quests to the queue when no messages are
available are minimized, thus also reducing
costs. If no messages are received during the
20 seconds window, the script waits for 5 sec-
onds before polling again. If messages are re-
ceived, the script iterates through them. Each
message body, formatted as JSON, contains
the S3 event notification. The notification in-
cludes the Records field, which holds details
about the uploaded file, such as the name of
the bucket and the object key.

body = json.loads(message['Body'])
for record in body.get('Records', []):

s3_bucket = record['s3']['bucket']['name']
s3_key = unquote_plus(record['s3']['object']['key'])

For each record in the notification, the script
extracts the bucket name and object key. The
object key is URL-encoded, so it is decoded

using “unquote_plus” to ensure the file name
is in the correct format. These details are then
passed to the” download_s3_object” function.

def download_s3_object(bucket_name, object_key):

os.makedirs(LOCAL_FOLDER, exist_ok=True)
local_file_path = os.path.join(LOCAL_FOLDER, os.path.basename(object_key))
s3.download_file(bucket_name, object_key, local_file_path)
print(f"Downloaded '{object_key}' from bucket '{bucket_name}' to '{lo-
cal_file_path}'.")

The “download_s3_object” function ensures
that the local folder (specified in the variable
“LOCAL_FOLDER”) exists by creating it if
necessary using “os.makedirs”. It constructs
the full local path for the downloaded file by
combining the folder path with the base name
of the object key. The function then uses the
“download_file” method of the S3 client to
get the file from the bucket and save it to the

specified local path. Messages are shown to
the console to indicate the progress and com-
pletion of the download. After a message is
successfully processed and the corresponding
file is downloaded, the script deletes the mes-
sage from the queue using the “delete_mes-
sage” method. This step ensures that the same
message is not reprocessed in subsequent poll-
ing iterations.

sqs.delete_message(

QueueUrl=queue_url,
ReceiptHandle=message['ReceiptHandle'])

The script is executed by calling the
“poll_sqs_queue” function within a condi-
tional block that verifies if the script is being
run directly. This ensures that the polling pro-
cess starts only when the script is executed as
a standalone program.

if __name__ == '__main__':
poll_sqs_queue()

The script is designed to run indefinitely, con-
tinuously monitoring the SQS queue for new
notifications about file uploads to S3. By do-
ing so, it automates the process of download-
ing files from S3 to a local temporary folder,

36 Informatica Economică vol. 29, no. 1/2025

ensuring that uploaded files are promptly
available locally for further processing.

4.5 Automated local watchfolder and trans-
coding script
After establishing the automated file down-
load process from the cloud to a temporary lo-
cal directory, we implemented an automated
file conversion script, written in Python, on
the same on-premises server as before, to
transform the incoming files into the specific
video format required by the Media Asset
Management system (MAM) of the news tel-
evision station involved in our experimental
research. The script will monitor the tempo-
rary local folder where the files are being
downloaded from the cloud. After the conver-
sion, this script will save the video files to a
network shared location from where the
MAM can import them.
First, we import the necessary Python librar-
ies. The “time” library is used to introduce de-
lays in the folder monitoring process, ensuring
the script does not overburden system re-
sources by checking too frequently. The “os”

library provides functionality to interact with
the file system, enabling the script to list files,
verify their properties, and build paths. Fi-
nally, the “subprocess” library facilitates the
execution of external commands, specifically
“Ffmpeg”, for the transcoding process. The
folder monitoring logic is implemented in the
“monitor_folder” function, which continu-
ously scans the specified source folder for
new files. It maintains a record of processed
files using a set, “processed_files”, to prevent
multiple processing of the same file. Within
an infinite loop, the script retrieves the current
list of files in the source folder using the
“os.listdir()” function. It filters this list to in-
clude only files with an .mp4 extension, re-
gardless of the case, by applying the
“str.endswith()” method, as this is the file for-
mat used for the mobile phone videos in our
experiments. Additionally, it verifies that the
listed items are files, not folders, using
“os.path.isfile()” function. The filtered list of
files is then converted into a set, “cur-
rent_files”.

def monitor_folder(source_folder, mxf_folder):
 processed_files = set()
 while True:
 try:
 current_files = {
 f for f in os.listdir(source_folder)
 if f.lower().endswith('.mp4') and
os.path.isfile(os.path.join(source_folder, f)) }

By computing the difference between the sets
“current_files” and “processed_files”, the
script identifies new media files that have not
yet been processed. For each new file, the
script builds its full path using “os.path.join()”
and passes this path, along with the destina-
tion folder path, to the “process_file” function

for further handling. After successfully pro-
cessing a file, its name is added to the “pro-
cessed_files” set to avoid reprocessing in sub-
sequent iterations. Between scans, the script
introduces a five-second delay using
“time.sleep()”, to balance efficiency with sys-
tem resource usage.

new_files = current_files - processed_files
 for filename in new_files:
 filepath = os.path.join(source_folder, filename)
 process_file(filepath, mxf_folder)
 processed_files.add(filename)
 time.sleep(5)

Next, the “process_file” function is responsi-
ble for handling each newly detected file.
Upon receiving a file, it first ensures that the
file is fully copied to the source folder before

beginning the transcoding process. This is
necessary because files arriving from an ex-
ternal source, as a cloud service in our case,
may not be immediately complete. To verify

Informatica Economică vol. 29, no. 1/2025 37

this, the script monitors the file size using
“os.path.getsize()” in a loop. It compares the
current size to the previous size recorded dur-
ing the previous iteration of the loop. If the file

size remains unchanged over consecutive
checks, the script concludes that the file is
fully written and ready for processing.

previous_size = -1
while True:
 try:
 current_size = os.path.getsize(filepath)
 if current_size == previous_size:
 break
 previous_size = current_size
 time.sleep(1)

Once the file is deemed ready, we can trans-
code it. For the transcoding process we used
“Ffmpeg”, a powerful, open-source multime-
dia software project used for handling multi-
media data such as audio, video, and other re-
lated files and streams. It is widely regarded
as one of the most versatile and comprehen-
sive tools for media processing [18]. We in-
stalled “Ffmpeg” on the local server that is
running the script and used it via the “subpro-
cess” library to invoke the “Ffmpeg” com-
mand-line tool directly from Python. To per-
form the transcoding, the script prepares an

“Ffmpeg” command as a list of arguments.
The input file is specified with the -i option,
while the video is encoded using the H.264 co-
dec (libx264) with a bit rate of 50 Mbps, a
frame rate of 50 frames per second, and a
color space of Rec. 709. The output video for-
mat uses 4:2:2 chroma subsampling in a pla-
nar layout (yuv422p). The audio is encoded as
24-bit PCM (pcm_s24le) with a sample rate of
48 kHz. The final argument specifies the path
for the transcoded file. The FFmpeg command
is executed using the “subprocess.run()” func-
tion.

ffmpeg_cmd = [
 'ffmpeg',
 '-i', filepath,
 '-c:v', 'libx264',
 '-b:v', '50M',
 '-r', '50',
 '-pix_fmt', 'yuv422p',
 '-colorspace', 'bt709',
 '-c:a', 'pcm_s24le',
 '-ar', '48000',
 output_filepath
]

 try:
 subprocess.run(ffmpeg_cmd, check=True)

The source and destination folder paths are
specified as UNC paths for network shares.
The script logs a success message, indicating
that the file has been transcoded and saved to
the destination folder. Both scripts were com-
piled to executable files using “pyinstaller”.

4.6 MAM importing and workflow design
The final step involves instructing the Media
Asset Management (MAM) to import the
transcoded file. Once imported, the file is
ready for on-air playback as it is or can be

further edited as part of a news segment.
We utilized the MAM's built-in configuration
manager to define a remote storage location
by specifying the UNC path where the auto-
mated file conversion script saves the trans-
coded files. Once the remote storage was de-
fined, we configured a Media Migration Pol-
icy to automatically import each new file from
the remote storage into the MAM system. Fig-
ure 3 illustrates the digital journey of the me-
dia file, tracing its path from the mobile phone
to the MAM system.

38 Informatica Economică vol. 29, no. 1/2025

Fig. 3. The progression of the media file through each stage

The workflow is designed to be straightfor-
ward, reporters that are dispatched at events to
capture interviews or supplementary visual
content (b-roll), upload the media using the
designated Android application. The uploaded
media is expected to appear in the television
station's Media Asset Management system
(MAM) automatically and faster than through
current workflows.

5 Experimental testing
With the framework components now estab-
lished, this study aims to evaluate the perfor-
mance of the automated media acquisition
framework through comparative analysis
against conventional media acquisition work-
flows. The primary metric of the comparison
is on speed, specifically the time elapsed from
the moment the footage is completely filmed
to its availability in the Media Asset Manage-
ment system (MAM). This duration is the sum
of all steps involved in the media acquisition
process. Additionally, the analysis will in-
clude a resource perspective, examining the
number of personnel involved in the ingest
process for each workflow.
Given that both file transfer and transcoding
times are highly influenced by video length,
all experiments were standardized using one-
minute video footage to ensure a fair compar-
ison. The timer begins immediately after the
filming is completed, with the one-minute

video serving as the point at which the media
asset is considered ready for ingestion. Since
most of the footage is filmed outside the tele-
vision station, the filming location also plays
an important role in the experiments. In cur-
rent workflows, reporters often return to the
television station with the recording device to
ingest the footage, contributing to significant
delays between filming and MAM import. For
this study, two remote filming locations were
selected, one in central Bucharest and another
just outside the television station's building.
The first remote location is the University's
Square, in Bucharest, 4.4 km away from the
television station. The second location was
chosen to reflect common practices, such as
reporters filming updates near the station to
provide timely information for evolving news
segments. The timer stops once the media as-
set is successfully imported into the MAM,
providing the ingestion speed for each work-
flow analyzed. Additionally, we will record
the number of personnel, apart from the re-
porter, required for the media asset to be im-
ported. With the video length, remote loca-
tions, and defined metrics in place, the exper-
iments are designed to assess and compare the
workflows.

5.1 Experiment 1
The first scenario examines one of the most
common workflows employed by

Informatica Economică vol. 29, no. 1/2025 39

broadcasters for media ingestion. In this ex-
periment the location where our standardized
one-minute video was filmed is in the center
of Bucharest and the reporter returns to the tel-
evision station with the recording device. The
device is then handed over to an ingest opera-
tor, who imports the footage into the Media
Asset Management system (MAM). For this
experiment, the measured time is the sum of
several steps: driving the company car back
from the remote filming location to the sta-
tion, handing over the device to the ingest op-
erator and making the ingest request, and
completing the ingest process at the ingest
workstation. The ingest process consisted of
copying the file from the phone to a temporary
folder via USB, transcoding it, and importing
it to the Media Asset Management (MAM)
system. This workflow involves an additional
person, the ingest operator, to successfully in-
gest the filmed media. For this experiment, we
assumed optimal conditions where the opera-
tor was immediately available and not occu-
pied with other ingest tasks, which would sig-
nificantly impact the calculated time. This al-
lowed us to measure the best-case scenario
completion time for this workflow.

5.2 Experiment 2
The second experiment is like the first one.
We chose the same remote location, the city
center, but instead of involving the ingest op-
erator, the reporter returns to the newsroom
and downloads the file locally from the phone
to a temporary location on his work provided
laptop, and then moves it to a network shared
location set up as a watchfolder for the Media
Asset Management (MAM) system own
transcoder server. By moving the file to this
location, the MAM will transcode and import
the file automatically using a transcode and
import server. The MAM transcoder server
has four channels meaning that it can only
handle four files at a time. In most cases there
is a queue of files waiting to be transcoded and
imported. For this second experiment, we as-
sumed optimal conditions where no files were
being queued, because it would significantly
increase the measured time. For this experi-
ment, the measured time is the sum of the time

it took to drive the company car back from the
remote filming location to the television sta-
tions newsroom, the time it took the reporter
to locally copy the media file and then transfer
it to the network share, and finally the time it
took the MAM transcoder server to process
and import the media asset. This workflow
does not involve additional human resources,
the reporter being in control of the ingest pro-
cess.

5.3 Experiment 3
For this experiment we considered the filming
location to be right outside the television sta-
tion, a common place to film last minute up-
dates to a news segment. In this scenario, we
measured the time it took the reporter to go to
the ingest workstation, hand over the mobile
phone to the ingest operator and make the in-
gest request. We added the time it took for the
ingest process to occur and stopped the timer
once the media file was successfully imported
in the Media Asset Management system. We
assumed optimal conditions where the opera-
tor was immediately available and not occu-
pied with other ingest tasks. This workflow re-
quires the involvement of the ingest operator
as an additional resource to ensure the ingest
process is completed successfully.

5.4 Experiment 4
In this experiment the filming location is the
same as the one in the previous experiment,
right outside the television station, but instead
of going to the ingest workstation, the reporter
is ingesting the file by transferring it to the
MAM transcoder server from his desk in the
newsroom. The total measured time is the
time it took the reporter to get back to his desk
from the filming location, the time it took to
transfer the file from the phone to the shared
network location and the time it took the
MAM transcoder server to process and import
the file. This workflow does not involve addi-
tional resources besides the reporter.

5.5 Experiment 5
At the television station where we conducted
our experiments, each employee has one tera-
byte of dedicated cloud storage. We tested a

40 Informatica Economică vol. 29, no. 1/2025

workflow where the reporter uploads the rec-
orded footage to their cloud storage, generates
a sharing link, and emails this link and an in-
gest request to the ingest operator. The ingest
operator then downloads the file locally and
imports it into the media asset management
system. To simulate remote filming condi-
tions, we used the cellular data (GSM) internet
connection of the mobile phone rather than
Wi-Fi for uploading the files. Our tests
showed no significant upload time differences
across different city locations, so we decided
to use the city center as the remote location for
uploading files in this experiment. The total
measured time for this experiment consisted
of several sequential steps: uploading the file,
generating a sharing link, sending the email to
the ingest operator, the time the operator spent
downloading the media file locally, and fi-
nally processing and importing it into the Me-
dia Asset Management system. This experi-
ment involves an additional resource, the in-
gest operator, and we considered the ideal sce-
nario where the operator was available to take
on the ingest request immediately.

5.6 Experiment 6
In this experiment, we tested a workflow
where a reporter in the city center uploads me-
dia files from their remote location to the ded-
icated cloud storage. They then share the files
and email a colleague in the newsroom the
link of the shared file. The newsroom reporter
reads the email, downloads the files locally
and transfers them to the MAM transcoder for
import into the Media Asset Management
(MAM) system. The measured time includes
the duration of uploading the file to the cloud,
the time taken by the remote reporter to share
the file and email the link to the newsroom re-
porter, the time required for the newsroom re-
porter to read the email and download the file
locally and transfer it to the MAM transcoder,
and finally, the time needed for the transcoder
to import the file into the Media Asset Man-
agement system. In this workflow, the news-
room reporter is utilized as an additional re-
source. For this experiment, we considered the
ideal scenario where the reporter is free to
download the media file immediately and the

MAM transcoder server has no queue.

5.7 Experiment 7
The final experiment employs the framework
and workflow we developed and presented in
this paper. We uploaded the same file using
the same device and cellular data connection.
The remote location chosen is also the city
center. Using our custom-built mobile appli-
cation, MediaUpload, the reporter uploads
media files to the S3 cloud storage. We meas-
ured the total process duration from the mo-
ment the reporter opens the application and
selects the file, through the media’s upload to
the cloud, automated local download by the
cloud monitoring script, transcoding by the lo-
cal watchfolder script, and ending once the
MAM import was complete. The workflow is
fully automated after the reporter selects the
file in MediaUpload, requiring no additional
human resources or manual steps.

5.8 Experiments overview
In each experiment, all uploads were per-
formed using the same cellular data connec-
tion and the same mobile device, while all
downloads used the company’s wired internet
connection. Transportation to the television
station was provided via company car and
driver, which is the standard procedure for re-
porters covering events. The midday timing
was chosen to ensure smoother traffic condi-
tions. The experiments were conducted using
the infrastructure of a news television station
headquartered in the city of Bucharest, district
6.

6 Results and discussion
Table 1 shows the measured metrics for all the
experiments conducted. The key metric is
time, but we’ve also considered the additional
human resources necessary, besides the re-
porter, to successfully import the media asset
to the Media Asset Management (MAM) sys-
tem of the television station as these two fac-
tors together reveal each workflow's effi-
ciency. To distinguish the cloud-based work-
flow experiments, their corresponding time
measurements appear highlighted in blue.

Informatica Economică vol. 29, no. 1/2025 41

Table 1. Experimental results
Experiment Measured time Time in seconds Additional resources
Experiment 1 26 minutes and 17 seconds 1577 1
Experiment 2 27 minutes and 3 seconds 1623 0
Experiment 3 9 minutes and 17 seconds 557 1
Experiment 4 10 minutes and 3 seconds 603 0
Experiment 5 5 minutes and 29 seconds 329 1
Experiment 6 7 minutes and 5 seconds 425 0
Experiment 7 1 minute and 47 seconds 107 0

Figure 4 presents the experimental results
sorted by duration, using the fastest time as a
baseline and showing the percentage

difference between each experiment. Having
the fastest time, Experiment 7 is considered
the reference.

Fig. 4 Experiments performance chart

The performance data reveals a clear ad-
vantage for cloud-based workflows, with our
automated framework demonstrating particu-
lar efficiency. Our solution outperforms other
cloud-based approaches by more than three
times, primarily due to automating previously
manual processes such as file transfers, link
sharing, email communication, and trans-
coding.
While “Experiment 5” achieves the second-
best time, it requires help from the ingest op-
erator, an additional human resource that our
framework is not requiring. The efficiency
gap becomes even more pronounced when
comparing against non-cloud workflows. For
instance, “Experiment 2,” which requires

physical transportation of devices to the pro-
cessing location, takes more than fifteen times
longer than our framework.
Our framework achieves two key advantages.
First and most important, it’s delivering the
fastest media asset import times to the Media
Asset Management (MAM) system. Second,
it eliminates the need for additional human re-
sources during the ingest process. These com-
bined benefits demonstrate that our proposed
solution represents the most efficient work-
flow overall, even when all other experiments
are conducted under ideal conditions.

7 Conclusions
This paper presented a framework for

42 Informatica Economică vol. 29, no. 1/2025

automating the media asset acquisition pro-
cess through a cloud-based workflow. The so-
lution we developed delivers both accelerated
ingest times and reduced resource require-
ments, which allows operational staff to focus
on other priorities. We validated this solution
in real-world experiments covering every es-
tablished workflow of a modern news televi-
sion station and documented the results. Fol-
lowing the experiments, we presented data
demonstrating the advantages of automation
and cloud-based workflows over traditional
approaches in two key metrics, time and hu-
man resources. Substantially reduced media
ingest times greatly benefit any content pro-
ducer, especially news television stations
where rapid information delivery is crucial.
Faster news delivery often translates to higher
viewership, which directly impacts advertis-
ing revenue. Stations known for quick, relia-
ble breaking news coverage can command
premium advertising rates. Furthermore, elim-
inating the need for additional personnel, such
as ingest operators, potentially provides addi-
tional economic benefits.

References
[1] Morikawa, Chamin, et al. "Image and

video processing on mobile devices: a sur-
vey." The Visual Computer 37.12 (2021):
2931-2949.

[2] Westlund, Oscar. "Mobile news: A review
and model of journalism in an age of mo-
bile media." Digital journalism 1.1 (2013):
6-26.

[3] Van Tassel, Joan. "Media Asset Manage-
ment." NTQ-AUSTIN TEXAS- 6 (1998):
21-28.

[4] Wager, Skiff. "Ingest, manage and distrib-
ute." Journal of Digital Asset Management
1 (2005): 157-163.

[5] Jämsä-Jounela, Sirkka-Liisa. "Future
trends in process automation." Annual Re-
views in Control 31.2 (2007): 211-220.

[6] Sheth, Amit. "Workflow automation: ap-
plications, technology and research."
ACM SIGMOD Record 24.2 (1995): 469.

[7] Stohr, Edward A., and J. Leon Zhao.
"Workflow automation: Overview and

research issues." Information Systems
Frontiers 3 (2001): 281-296.

[8] Schultz, Fred. "Automation and live tele-
vision news: Enhanced support for a com-
plex workflow." SMPTE motion imaging
journal 112.1 (2003): 29-35.

[9] Restrepo, Pascual. "Automation: Theory,
Evidence, and Outlook." Annual Review
of Economics 16 (2023).

[10] Georgakopoulos, Diimitrios, Mark
Hornick, and Amit Sheth. "An overview of
workflow management: From process
modeling to workflow automation infra-
structure." Distributed and parallel Data-
bases 3 (1995): 119-153.

[11] Fisher, Cameron. "Cloud versus on-
premise computing." American Journal of
Industrial and Business Management 8.9
(2018): 1991-2006.

[12] Alzakholi, Omar, et al. "Comparison
among cloud technologies and cloud per-
formance." Journal of Applied Science
and Technology Trends 1.1 (2020): 40-47.

[13] Tessem, Bjørnar, Are Tverberg, and Njål
Borch. "The future technologies of jour-
nalism." Procedia Computer Science 239
(2024): 96-104.

[14] Deb, Moumita, and Abantika Choudhury.
"Hybrid cloud: A new paradigm in cloud
computing." Machine learning techniques
and analytics for cloud security (2021): 1-
23.

[15] Rodrigues, Luis Pedro Ribeiro, Vania
Baldi, and Adelino de Castro Oliveira
Simões Gala. "MOBILE JOURNALISM:
the emergence of a new field of journal-
ism." Brazilian journalism research 17.2
(2021): 280-305.

[16] Mahon, James, and PgCert TLHE Dip.
"The mojo revolution: A critical evalua-
tion of mobile journalism practice and its
impact on journalistic identity." (2021).

[17] Usher, Nikki. "Breaking news production
processes in US metropolitan newspapers:
Immediacy and journalistic authority."
Journalism 19.1 (2018): 21-36.

[18] V. Subhash. " Quick Start Guide to
FFmpeg: Learn to Use the Open Source
Multimedia-Processing Tool like a Pro."
Apress; 1st ed. edition (2023)

Informatica Economică vol. 29, no. 1/2025 43

Adrian VINTILĂ has graduated the National University of Science and Tech-
nology Politehnica Bucharest. He is currently a PhD student at the Bucharest
University of Economic Studies. With a strong background in the field of in-
formation technology and broadcast engineering, his research focuses on in-
telligent systems for innovation in media and television production within ed-
ucational centers.

Constanta-Nicoleta BODEA is Professor Emerita at Bucharest University of
Economic Studies, Romania, holding a Ph.D. in Economic Cybernetics and
Statistics. She is Senior Researcher at the Centre for Industrial and Services
Economics, Romanian Academy of Sciences, and contributes to the Doctoral
Study in Project Management at Alma Mater Europaea University, Slovenia.
Her research focuses on project management, service innovation, and technol-
ogy-enhanced teaching and learning. She published more than 50 books and

book chapters, and 370 papers in journals and conferences.

