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With the advent of Internet of Things and the success of social media, the amount of data that 

is being sent to the cloud is ever-increasing. As such, finding possible solutions to alleviate the 

strain that is currently placed on our infrastructure is a hot topic both in the researcher’s com-

munity as well as the enterprise solution vendors in pursuit of the next big breakthrough in 

computing. One such solution is edge-computing, first making its appearance in the 1990s when 

Akamai launched its content delivery network [1], moving the content source closer to the user 

to minimize latency and transmission costs. Today, this concept evolved into a computing par-

adigm [2], which supports deploying applications on nearby devices with near zero downtime. 

Among the emerging frameworks, be them open source such as EdgeX framework, research 

originating such as FogBus2, or enterprise solution such AWS GreenGrass, several common 

architectural patterns were identified such as the heavy use of Containerization, decoupling of 

components by using message passing interfaces and network segregation among edge and 

cloud devices. The proposed solution aims to build on top of existing knowledge, by using light-

weight peer-to-peer orchestration aimed at running centrally stored Java artifacts. 
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Introduction 

According to Cisco’s VNI Complete Fore-

cast Highlights [3], the average traffic per cap-

ita per month experienced an almost 300% in-

crease from 2016 to 2021, growing from 

12.9GB to 35.5GB. This sustained growth 

along with the shift from desktop to mobile 

devices prompted the need for a more flexible 

computing model, one that would bring the re-

sources closer to the user. 

In the past, a resource would simply represent 

a static asset: a HTML page or an image. For 

this use-case, Akamai revolutionized the in-

ternet with the introduction of the content de-

livery network (CDNs). Fast forward to today, 

and a resource has a vastly different meaning, 

ranging from a stream that needs to be de-

coded just-in-time, to user produced media 

that needs to be processed by cloud services. 

As such, the strain placed on the network is 

ever increasing, with efforts to increase the 

available bandwidth already underway [4] [5]. 

Since these are finite resources, we are bound 

to hit a breaking point where adding more re-

sources to support the growing scale is not go-

ing to make economic sense. As such, 

researchers [6] are alluding to an evolutionary 

step, an extension of our current cloud model 

meant to split the workload among multiple 

devices closer to the user. 

Also, the current cloud computing paradigm is 

plagued by several shortcomings such as: 

• Potential of increased latency due to dis-

tance between request originator and 

cloud; 

• High environmental impact due to non-

optimal resource utilization; 

• High risk of data leak due to transmission 

of sensitive data. 

To overcome these issues, a significant 

amount of resources are poured into research-

ing and developing edge computing solutions, 

with proven applications in artificial intelli-

gence [7], e-commerce [8], and many others.  

To accommodate the largest range of devices, 

a middle ground between edge computing and 

cloud computing exists called fog computing 

[9], in which minimal the data is minimally 

processed at the edge layer with aggregations 

and complex business processes happening in 

an intermediate layer, the fog layer, before 

eventually shipping it to the cloud layer for 
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terminal processing and long term storage. 

Several solutions are emerging in the edge-fog 

computing space, among those noting EdgeX 

Foundry of the Linux Foundation [10], AWS 

Greengrass [11], or FogBus2 [12], enabling 

on-device compute capabilities by leveraging 

containerization, thus achieving platform ag-

nosticism and a high level of flexibility in the 

amount of applications that can be ran. 

On a high level, these solutions have a great 

degree of commonality, devices being softly 

segmented into 3 layers: 

• End-node 

o Device responsible with producing or 

consuming data 

• Edge layer 

o Primary computing layer 

o Able to offload any amount of the 

computation to the cloud 

o Can also be an end-node 

• Cloud (only FogBus2) 

o Resource rich computing layer 

 

 
Fig. 1. Edge-Cloud computing architecture 

 

As it can be seen in Figure 1, all these layers 

work in a symbiotic manner, the edge layer 

being best suited for privacy or latency sensi-

tive operations, while the cloud is better used 

for compute-heavy workloads or long-term 

storage of data. 

Although providing a flexible deployment 

model by using containerization, the above 

frameworks are limited to being run on fully-

fledged machines running General Purpose 

Operating Systems such as Linux since only 

those are currently supporting container 

runtimes. As such, their applicability on 

lower-powered devices such as IP Cameras, 

Smart Fridges and IoT nodes is severely im-

pacted. 

To overcome the above limitation, this paper 

proposes a transparent hybrid cloud compu-

ting framework which uses peer to peer or-

chestration to transparently schedule work-

loads on either edge or cloud. The platform is 

language agnostic by exposing a simple inter-

face for tasks, but for brevity we’ll assume 

that the task is implemented using Java. 

 

2 OpenEdgeComputeFramework 

OpenEdgeComputeFramework aims to bring 

computing closer to the user by transparently 

handling any task scheduling in a fair and 

transparent manner among edge and cloud de-

vices. This approach should result in a lower 

network bandwidth consumption by perform-

ing a significant chunk of computation on-de-

vice, leveraging the increase in CPU power of 

ordinary devices.  

To bring some numbers to the equation, an 

iPhone 15 Pro has a single thread score in the 

GeekBench 6 benchmark comparable to a 

desktop 14th Generation Intel core i7 proces-

sor [13], which, taking into consideration the 

fact that a large amount of workloads are 

purely single-threaded, should result in a large 

amount of computations able to be performed 

on-device. 

The proposed architecture consists of two lay-

ers, edge, and cloud devices, where each node 

has an identical stack of components and task 

orchestration is performed in a distributed 

peer-to-peer manner. The framework consists 

of several components, each having funda-

mentally a single responsibility: orchestration, 

task execution, telemetry collection, and re-

mote logging.
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Fig. 2. Proposed architecture 

 

As per Figure 2, the components of the frame-

work are the Orchestrator, the Worker, the Te-

lemetry Component, and the Remote Logger 

component, going over the functionality of 

each component one by one.  

 

2.1 Orchestrator 

The orchestrator is the most important part of 

the framework, being responsible for bringing 

the device to a ready state, storing the device 

registry, while also scheduling and monitoring 

tasks. 

It acts a control plane, transparently distrib-

uting workloads among nodes available in the 

compute pool based on key metrics such as 

available CPU, RAM, and flash storage, while 

also taking into consideration the processing 

power of the device and the latency.

 

 

 
Fig. 3. Device Join Flow 

 

As seen in Figure 3, the role of the orchestra-

tor starts with the device enrolment, which is 

performed by publishing a JOIN event on a 

well-known Kafka Topic (oecf_new_devices) 

with the device descriptor and telemetry infor-

mation. This descriptor contains information 

relevant for computing the device score, a 

metric used to determine the best available 

node for scheduling tasks. 

Once the event has been emitted on the 

oecf_new_devices topic, the orchestrator will 

create and subscribe to the topic oecf_{no-

deId}_enrolled_devices, a standard frame-

work topic used for one-time population of the 

device registry with already pooled resources. 

The payload follows the same format as the 

new devices’ topic, thus maintaining a uni-

form interface between devices. 
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From the existing device perspective, the flow 

is reversed; the node is subscribed to the 

oecf_new_devices topic and used it to enlarge 

the device registry. Once the event is received, 

it will publish its own device descriptor in the 

enrolled devices topic. 

Once device information is exchange among 

parties, the process continues by computing 

the device score:

 

𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑣𝑖𝑐𝑒 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑜𝑤𝑒𝑟 ∗ (100 − 𝑐𝑝𝑢𝑢𝑠𝑒𝑑) ∗ 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝐵𝑜𝑛𝑢𝑠
∗ 𝑡𝑎𝑠𝑘𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐵𝑜𝑛𝑢𝑠 

 

Legend: 

  computePower – computed at orchestrator 

startup by running performance benchmark 

  balancingFactor – mean compute power; as-

sures fair distribution of work by balancing outli-

ers 

  proximityBonus – value boosting the score of 

devices in close-proximity; subject to online 

machine learning for balancing the factor based 

on network load 

  taskRunningBonus – booster for preferring 

nodes which already have a worker node of that 

type spun up 

This device score is constantly recomputed by 

the orchestrator once any equation factor 

changes and is the metric used in determining 

the suitable worker node.

 

 
Fig. 4. Initialization of device registry 

 

Having performed the steps outlined in Figure 

4, the orchestrator has completed the initiali-

zation logic and is ready to compute work-

loads.  

In this state, the device registry is fully initial-

ized, and the orchestrator is subscribed to 

other parties’ telemetry topic used for real-

time updates of the device score. Additionally, 

this sub-component is responsible for purging 

zombie devices, removing any device from 

the pool which didn’t send telemetry infor-

mation for more than a configurable threshold 

value. 

The orchestration mechanism is peer to peer, 

with the orchestrator being responsible for 

transparently scheduling tasks either on the 

edge device or remote machines based on the 

pre-computed device score. 

Tasks are created using a COAP POST call 

exposed by the orchestrator, /createTask, 

which expects the task type to be mentioned. 

Behind the scenes, this API call will start the 

following orchestration logic: 

• By using the pre-computed device scores, 

determine the best available device 

• Generate task name if friendly name not 

specified 

• Based on the running workers telemetry 
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information: 
o If worker is running, continue 

o If worker is not running, perform COAP 

POST /createWorker specifying the 

worker type 

o Once worker is up, push the arguments via 

dedicated Kafka topic oecf_task-

Type_workerName 

o List all Kafka Topics starting with 

oecf_taskType_workerName_ and sub-

scribe to them for receiving tasks updates 

 

2.2 Worker 

The worker’s responsibility is to carry compu-

tations on behalf of the orchestrator. The 

runtime acts as shell for incoming tasks, each 

worker being loaded with the logic of a single 

task type and can carry one or more tasks in 

parallel. The process is spun-up in a synchro-

nous manner by the local orchestrator either 

on its behalf or on the request of a remote or-

chestrator. This process is triggered once the 

orchestrator receives the COAP POST /cre-

ateWorker request. 

The worker process is language agnostic, the 

only requirement being the implementation of 

the common interface: 
String process(String input) 

 

For the sake of simplicity, we’ll continue dis-

cussing based on a Java reference implemen-

tation of the worker. As such, the worker is to 

be packaged as a jar file and spun up by the 

local orchestrator on-demand, providing the 

task type as command line argument. 

 
java -jar $OECF_HOME/worker/worker.jar 

<TASK_TYPE> 

 

The task type argument is needed since the 

worker runtime is just a shell responsible for 

supervision of task execution, updating the 

state of the running task and facilitating in-

coming task requests, following the lifecycle 

outlined in Figure 5.

 

 

 
Fig. 5. Worker Lifecycle 

 

In the reference Java implementation, the ini-

tialization logic of the worker starts by parsing 

the task type from the command line argu-

ment. Then, the worker needs to determine if 

the application is already cached or needs to 

be downloaded. For that step, the worker will 

list all the files in the 

$OECF_HOME/worker/jars directory and 

will perform the matching based on the fol-

lowing format: task_type_version.jar. If the 

jar file is not locally present, it will get pulled 

from the central application repository, in this 

case an AWS S3 bucket. To prevent malicious 

code from getting executed on worker nodes, 

all applications need to be digitally signed by 

a central authority; as such, once the applica-

tion file is available locally, the jar will have 

its signature verified with the Public Certifi-

cate of the signing authority. 

Once the code’s integrity and source are veri-

fied, a custom class loader will be instantiated 

that allows the worker process to load appli-

cation code at run-time. To be able to correctly 

instantiate the application, all jars are bundled 

with descriptor files in YAML format. 

 
e.g.: mainClass: org.example.TestClass 
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The above example showcases the minimum 

required application descriptor specifying the 

entry point for the application. Sanity checks 

are performed using Reflection API to make 

sure that this application can be instantiated, 

verifying that it correctly implements the 

Worker interface and has a default construc-

tor exposed.

 

 
Fig. 6. Application Loading 

 

Having performed the initialization logic as 

described in Figure 6, the worker will signal 

to the local orchestrator that it is up and ready 

to receive commands. This step is necessary 

since nodes which already have a worker pro-

cess spun-up are given a device score bonus 

since the time to execute is significantly de-

creased by bypassing any initialization logic 

and going straight to command execution. 

The commands will be received via Kafka 

Topic oecf_taskType_workerName from the 

originating orchestrator, the worker register-

ing an event handler on that topic which 

wraps the incoming arguments in a WorkEx-

ecutor that invokes the underlying applica-

tion logic and handles state updates transpar-

ently. All the work is submitted to be ran in a 

separate thread, orchestrated by an Executor 

Service. This message passing allows decou-

pling of worker from orchestrator, the com-

puting being carried in a transparent matter 

indifferent of the originating source. 

Additionally, cold boot times of applications 

are improved by maintaining workers in a la-

tent state for a configurable amount of time 

after the last task execution, thus being ready 

as soon as the any task is being submitted to 

the orchestrator. 

 

2.3 Telemetry Component 

To be able to effectively schedule computing 

workloads on different nodes, knowing the 

real-time system load plays a pivotal role, as 

this directly impacts the device’s ability to 

perform in a reliable and time-efficient man-

ner. 

As such, booting up the telemetry component 

is a mandatory step as part of the device en-

rolment and initialization process. This mod-

ule is responsible with tracking the CPU load, 

available RAM, flash storage and running 

workers. This information is periodically col-

lected and submitted on the telemetry topic to 

which all participating orchestrators are sub-

scribed to. 

 
e.g.:  

{ 

  availableCPU: 45 (%), 

  availableRAM: 8192 (MB), 

  availableFlash: 500 (MB), 

  runningWorkers: [Type1_Woker1, …] 

} 

 

2 4 Remote Logger 

Observability [14] plays a pivotal role in mod-

ern distributed systems, helping deliver faster, 

automated problem identification and resolu-

tion. As such, this framework was built with 

rich monitoring support and goes beyond that 

by incorporating observability staples such as 

health checks, log aggregation, exception 

tracking and collection of key metrics. 

Key metrics are captured by telemetry compo-

nent, while health checks are assured by using 

anu received data as heartbeat signal; this en-

sures that all parties in the pool are in a ready-
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to-compute state, using the last heartbeat as an 

effective eviction policy.  

The remote logger component is responsible 

for capturing console output of the running 

workers, thus allowing effective monitoring 

of the state of the system. These logs can then 

be aggregated and filtered by using a standard 

Elastic Stack, thus achieving a good level of 

observability. 

 

3 Real-World Applications and Future Di-

rections 

The above framework presents an opinionated 

method of developing and deploying edge 

computing applications on a scale. Besides the 

traditional IoT applications such as smart 

homes and industrial automations, this frame-

work presents the user with the ability to per-

form large scale calculations in a distributed 

manner on many heterogeneous devices. 

This ability can be leveraged in multiple real-

world scenarios such as video processing, ML 

inference, network analysis, and many others. 

To dive deep into the video processing exam-

ple, the current computing model for such ap-

plications (e.g. YouTube) implies the transfer 

of videos over the Internet to be encoded and 

resized to a plethora of resolutions. This kind 

of application is easily parallelizable, being 

able to easily breakdown videos into chunks 

and distribute it among multiple machines; 

this would greatly speed up the encoding 

speed but would not reduce the strain placed 

on the network.  

To summarize, this application has two major 

cost components: the computing power, while 

albeit seemingly infinite has a hefty price tag, 

and the network component, where any infra-

structure project is in the billions range [15]. 

As such, the cost of supporting the ever-in-

creasing amount of user generated content is 

bound to outpace the monetization potential of 

those video.  

This framework attempts to be an enabled to 

continuous growth by bringing the computa-

tion closer to the user base. A tiered approach 

can be implemented where the computation is 

first performed on local devices (e.g. transmit-

ting data over LAN), with excess falling over 

to devices in proximity (e.g. devices in the 

same region as the user), ultimately offloading 

it to the cloud if no other devices are available. 

This model, depicted in Figure 7, shall greatly 

reduce the network impact, with each chunk 

being in transit for a lower amount of time.

 

 
Fig. 7. Video Processing application developed in OpenEdgeComputeFramework 

 

Moving forward, a point of future development of this framework would consist 
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in evaluating the performance against existing 

solutions together with identifying current 

bottlenecks. One such example would be re-

placing the usage Kafka with the lighter 

weight MQTT protocol [16]. 

 

4 Conclusion 

To summarize, this paper proposes a shift 

from the current direction in edge computing 

which leverages container runtimes to offer 

platform agnosticism and offer runtime uni-

formity guarantees. OpenEdgeCom-

puteFramework proposes a leaner approach, 

offering a slim Java Worker which can pull 

application logic from a central repository, but 

consuming less resources per worker than 

other solutions, reusing the Java Runtime of 

the host.  

Framework initialization and worker coordi-

nation is performed by the Orchestrator, the 

central component of the framework. This 

module allows device discovery, careful 

workload scheduling based on a continuously 

updated device score and monitoring on initi-

ated tasks. All of this is done in a peer-to-peer 

and decoupled manner by utilizing Kafka, 

which adds fault tolerance to the solution. 

The orchestrator is also responsible for creat-

ing new workers, always started on the local 

machine either on its behalf or on the behalf 

of another orchestrator. The worker process is 

a slim wrapper around run-time loaded appli-

cation code which is responsible for transpar-

ently handling any framework abstractions 

such as task updates, latent timers used to keep 

the worker alive for a configurable amount of 

time to improve cold-boot times, reporting 

back to orchestrator, command marshalling 

and many others. All the loaded application 

logic is loaded in a centralized repository, in 

this example an AWS S3 bucket, in the form 

a signed jar file. The Java Archive is signed 

by a certified signing authority to prevent ex-

ecution of malicious code, thus ensuring the 

origin and integrity of the downloaded appli-

cation.  

Playing a pivotal role in the good working of 

the framework is the telemetry component, 

which collects vital information about the 

state of the host system such as available CPU, 

RAM and flash storage, while also keeping 

track of the running workers on the system. 

This information is periodically emitted as an 

event on the telemetry topic to be picked up 

by all the other nodes participating in the pool, 

which will become inputs in the computation 

of the device score and will also act as a heart-

beat signal marking that the node is up and 

healthy. 

Observability is ensured by remote logger 

component, which forwards all application 

log to be later aggregated and visualized using 

Elasticsearch. 

To sum this all up, this paper proposes a 

complete solution for edge-computing which 

allows transparent orchestration of work 

among different nodes, be them edge or 

cloud, using lightweight worker nodes which 

encapsulate Java application logic at startup 

while also providing good observability over 

the inner workings of the system. 
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