
74 Informatica Economică vol. 24, no. 4/2024

OpenEdgeComputeFramework. A Framework

for Seamless Edge-Cloud Computing

Andrei-Robert CAZACU

Bucharest University of Economic Studies, Romania

andrei.cazacu@csie.ase.ro

With the advent of Internet of Things and the success of social media, the amount of data that

is being sent to the cloud is ever-increasing. As such, finding possible solutions to alleviate the

strain that is currently placed on our infrastructure is a hot topic both in the researcher’s com-

munity as well as the enterprise solution vendors in pursuit of the next big breakthrough in

computing. One such solution is edge-computing, first making its appearance in the 1990s when

Akamai launched its content delivery network [1], moving the content source closer to the user

to minimize latency and transmission costs. Today, this concept evolved into a computing par-

adigm [2], which supports deploying applications on nearby devices with near zero downtime.

Among the emerging frameworks, be them open source such as EdgeX framework, research

originating such as FogBus2, or enterprise solution such AWS GreenGrass, several common

architectural patterns were identified such as the heavy use of Containerization, decoupling of

components by using message passing interfaces and network segregation among edge and

cloud devices. The proposed solution aims to build on top of existing knowledge, by using light-

weight peer-to-peer orchestration aimed at running centrally stored Java artifacts.

Keywords: Edge computing, Cloud computing, Distributed computing

DOI: 10.24818/issn14531305/28.4.2024.06

Introduction

According to Cisco’s VNI Complete Fore-

cast Highlights [3], the average traffic per cap-

ita per month experienced an almost 300% in-

crease from 2016 to 2021, growing from

12.9GB to 35.5GB. This sustained growth

along with the shift from desktop to mobile

devices prompted the need for a more flexible

computing model, one that would bring the re-

sources closer to the user.

In the past, a resource would simply represent

a static asset: a HTML page or an image. For

this use-case, Akamai revolutionized the in-

ternet with the introduction of the content de-

livery network (CDNs). Fast forward to today,

and a resource has a vastly different meaning,

ranging from a stream that needs to be de-

coded just-in-time, to user produced media

that needs to be processed by cloud services.

As such, the strain placed on the network is

ever increasing, with efforts to increase the

available bandwidth already underway [4] [5].

Since these are finite resources, we are bound

to hit a breaking point where adding more re-

sources to support the growing scale is not go-

ing to make economic sense. As such,

researchers [6] are alluding to an evolutionary

step, an extension of our current cloud model

meant to split the workload among multiple

devices closer to the user.

Also, the current cloud computing paradigm is

plagued by several shortcomings such as:

• Potential of increased latency due to dis-

tance between request originator and

cloud;

• High environmental impact due to non-

optimal resource utilization;

• High risk of data leak due to transmission

of sensitive data.

To overcome these issues, a significant

amount of resources are poured into research-

ing and developing edge computing solutions,

with proven applications in artificial intelli-

gence [7], e-commerce [8], and many others.

To accommodate the largest range of devices,

a middle ground between edge computing and

cloud computing exists called fog computing

[9], in which minimal the data is minimally

processed at the edge layer with aggregations

and complex business processes happening in

an intermediate layer, the fog layer, before

eventually shipping it to the cloud layer for

1

Informatica Economică vol. 24, no. 4/2024 75

terminal processing and long term storage.

Several solutions are emerging in the edge-fog

computing space, among those noting EdgeX

Foundry of the Linux Foundation [10], AWS

Greengrass [11], or FogBus2 [12], enabling

on-device compute capabilities by leveraging

containerization, thus achieving platform ag-

nosticism and a high level of flexibility in the

amount of applications that can be ran.

On a high level, these solutions have a great

degree of commonality, devices being softly

segmented into 3 layers:

• End-node

o Device responsible with producing or

consuming data

• Edge layer

o Primary computing layer

o Able to offload any amount of the

computation to the cloud

o Can also be an end-node

• Cloud (only FogBus2)

o Resource rich computing layer

Fig. 1. Edge-Cloud computing architecture

As it can be seen in Figure 1, all these layers

work in a symbiotic manner, the edge layer

being best suited for privacy or latency sensi-

tive operations, while the cloud is better used

for compute-heavy workloads or long-term

storage of data.

Although providing a flexible deployment

model by using containerization, the above

frameworks are limited to being run on fully-

fledged machines running General Purpose

Operating Systems such as Linux since only

those are currently supporting container

runtimes. As such, their applicability on

lower-powered devices such as IP Cameras,

Smart Fridges and IoT nodes is severely im-

pacted.

To overcome the above limitation, this paper

proposes a transparent hybrid cloud compu-

ting framework which uses peer to peer or-

chestration to transparently schedule work-

loads on either edge or cloud. The platform is

language agnostic by exposing a simple inter-

face for tasks, but for brevity we’ll assume

that the task is implemented using Java.

2 OpenEdgeComputeFramework

OpenEdgeComputeFramework aims to bring

computing closer to the user by transparently

handling any task scheduling in a fair and

transparent manner among edge and cloud de-

vices. This approach should result in a lower

network bandwidth consumption by perform-

ing a significant chunk of computation on-de-

vice, leveraging the increase in CPU power of

ordinary devices.

To bring some numbers to the equation, an

iPhone 15 Pro has a single thread score in the

GeekBench 6 benchmark comparable to a

desktop 14th Generation Intel core i7 proces-

sor [13], which, taking into consideration the

fact that a large amount of workloads are

purely single-threaded, should result in a large

amount of computations able to be performed

on-device.

The proposed architecture consists of two lay-

ers, edge, and cloud devices, where each node

has an identical stack of components and task

orchestration is performed in a distributed

peer-to-peer manner. The framework consists

of several components, each having funda-

mentally a single responsibility: orchestration,

task execution, telemetry collection, and re-

mote logging.

76 Informatica Economică vol. 24, no. 4/2024

Fig. 2. Proposed architecture

As per Figure 2, the components of the frame-

work are the Orchestrator, the Worker, the Te-

lemetry Component, and the Remote Logger

component, going over the functionality of

each component one by one.

2.1 Orchestrator

The orchestrator is the most important part of

the framework, being responsible for bringing

the device to a ready state, storing the device

registry, while also scheduling and monitoring

tasks.

It acts a control plane, transparently distrib-

uting workloads among nodes available in the

compute pool based on key metrics such as

available CPU, RAM, and flash storage, while

also taking into consideration the processing

power of the device and the latency.

Fig. 3. Device Join Flow

As seen in Figure 3, the role of the orchestra-

tor starts with the device enrolment, which is

performed by publishing a JOIN event on a

well-known Kafka Topic (oecf_new_devices)

with the device descriptor and telemetry infor-

mation. This descriptor contains information

relevant for computing the device score, a

metric used to determine the best available

node for scheduling tasks.

Once the event has been emitted on the

oecf_new_devices topic, the orchestrator will

create and subscribe to the topic oecf_{no-

deId}_enrolled_devices, a standard frame-

work topic used for one-time population of the

device registry with already pooled resources.

The payload follows the same format as the

new devices’ topic, thus maintaining a uni-

form interface between devices.

Informatica Economică vol. 24, no. 4/2024 77

From the existing device perspective, the flow

is reversed; the node is subscribed to the

oecf_new_devices topic and used it to enlarge

the device registry. Once the event is received,

it will publish its own device descriptor in the

enrolled devices topic.

Once device information is exchange among

parties, the process continues by computing

the device score:

𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑣𝑖𝑐𝑒 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑜𝑤𝑒𝑟 ∗ (100 − 𝑐𝑝𝑢𝑢𝑠𝑒𝑑) ∗ 𝑏𝑎𝑙𝑎𝑛𝑐𝑖𝑛𝑔𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦𝐵𝑜𝑛𝑢𝑠
∗ 𝑡𝑎𝑠𝑘𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝐵𝑜𝑛𝑢𝑠

Legend:

 computePower – computed at orchestrator

startup by running performance benchmark

 balancingFactor – mean compute power; as-

sures fair distribution of work by balancing outli-

ers

 proximityBonus – value boosting the score of

devices in close-proximity; subject to online

machine learning for balancing the factor based

on network load

 taskRunningBonus – booster for preferring

nodes which already have a worker node of that

type spun up

This device score is constantly recomputed by

the orchestrator once any equation factor

changes and is the metric used in determining

the suitable worker node.

Fig. 4. Initialization of device registry

Having performed the steps outlined in Figure

4, the orchestrator has completed the initiali-

zation logic and is ready to compute work-

loads.

In this state, the device registry is fully initial-

ized, and the orchestrator is subscribed to

other parties’ telemetry topic used for real-

time updates of the device score. Additionally,

this sub-component is responsible for purging

zombie devices, removing any device from

the pool which didn’t send telemetry infor-

mation for more than a configurable threshold

value.

The orchestration mechanism is peer to peer,

with the orchestrator being responsible for

transparently scheduling tasks either on the

edge device or remote machines based on the

pre-computed device score.

Tasks are created using a COAP POST call

exposed by the orchestrator, /createTask,

which expects the task type to be mentioned.

Behind the scenes, this API call will start the

following orchestration logic:

• By using the pre-computed device scores,

determine the best available device

• Generate task name if friendly name not

specified

• Based on the running workers telemetry

78 Informatica Economică vol. 24, no. 4/2024

information:
o If worker is running, continue

o If worker is not running, perform COAP

POST /createWorker specifying the

worker type

o Once worker is up, push the arguments via

dedicated Kafka topic oecf_task-

Type_workerName

o List all Kafka Topics starting with

oecf_taskType_workerName_ and sub-

scribe to them for receiving tasks updates

2.2 Worker

The worker’s responsibility is to carry compu-

tations on behalf of the orchestrator. The

runtime acts as shell for incoming tasks, each

worker being loaded with the logic of a single

task type and can carry one or more tasks in

parallel. The process is spun-up in a synchro-

nous manner by the local orchestrator either

on its behalf or on the request of a remote or-

chestrator. This process is triggered once the

orchestrator receives the COAP POST /cre-

ateWorker request.

The worker process is language agnostic, the

only requirement being the implementation of

the common interface:
String process(String input)

For the sake of simplicity, we’ll continue dis-

cussing based on a Java reference implemen-

tation of the worker. As such, the worker is to

be packaged as a jar file and spun up by the

local orchestrator on-demand, providing the

task type as command line argument.

java -jar $OECF_HOME/worker/worker.jar

<TASK_TYPE>

The task type argument is needed since the

worker runtime is just a shell responsible for

supervision of task execution, updating the

state of the running task and facilitating in-

coming task requests, following the lifecycle

outlined in Figure 5.

Fig. 5. Worker Lifecycle

In the reference Java implementation, the ini-

tialization logic of the worker starts by parsing

the task type from the command line argu-

ment. Then, the worker needs to determine if

the application is already cached or needs to

be downloaded. For that step, the worker will

list all the files in the

$OECF_HOME/worker/jars directory and

will perform the matching based on the fol-

lowing format: task_type_version.jar. If the

jar file is not locally present, it will get pulled

from the central application repository, in this

case an AWS S3 bucket. To prevent malicious

code from getting executed on worker nodes,

all applications need to be digitally signed by

a central authority; as such, once the applica-

tion file is available locally, the jar will have

its signature verified with the Public Certifi-

cate of the signing authority.

Once the code’s integrity and source are veri-

fied, a custom class loader will be instantiated

that allows the worker process to load appli-

cation code at run-time. To be able to correctly

instantiate the application, all jars are bundled

with descriptor files in YAML format.

e.g.: mainClass: org.example.TestClass

Informatica Economică vol. 24, no. 4/2024 79

The above example showcases the minimum

required application descriptor specifying the

entry point for the application. Sanity checks

are performed using Reflection API to make

sure that this application can be instantiated,

verifying that it correctly implements the

Worker interface and has a default construc-

tor exposed.

Fig. 6. Application Loading

Having performed the initialization logic as

described in Figure 6, the worker will signal

to the local orchestrator that it is up and ready

to receive commands. This step is necessary

since nodes which already have a worker pro-

cess spun-up are given a device score bonus

since the time to execute is significantly de-

creased by bypassing any initialization logic

and going straight to command execution.

The commands will be received via Kafka

Topic oecf_taskType_workerName from the

originating orchestrator, the worker register-

ing an event handler on that topic which

wraps the incoming arguments in a WorkEx-

ecutor that invokes the underlying applica-

tion logic and handles state updates transpar-

ently. All the work is submitted to be ran in a

separate thread, orchestrated by an Executor

Service. This message passing allows decou-

pling of worker from orchestrator, the com-

puting being carried in a transparent matter

indifferent of the originating source.

Additionally, cold boot times of applications

are improved by maintaining workers in a la-

tent state for a configurable amount of time

after the last task execution, thus being ready

as soon as the any task is being submitted to

the orchestrator.

2.3 Telemetry Component

To be able to effectively schedule computing

workloads on different nodes, knowing the

real-time system load plays a pivotal role, as

this directly impacts the device’s ability to

perform in a reliable and time-efficient man-

ner.

As such, booting up the telemetry component

is a mandatory step as part of the device en-

rolment and initialization process. This mod-

ule is responsible with tracking the CPU load,

available RAM, flash storage and running

workers. This information is periodically col-

lected and submitted on the telemetry topic to

which all participating orchestrators are sub-

scribed to.

e.g.:

{

 availableCPU: 45 (%),

 availableRAM: 8192 (MB),

 availableFlash: 500 (MB),

 runningWorkers: [Type1_Woker1, …]

}

2 4 Remote Logger

Observability [14] plays a pivotal role in mod-

ern distributed systems, helping deliver faster,

automated problem identification and resolu-

tion. As such, this framework was built with

rich monitoring support and goes beyond that

by incorporating observability staples such as

health checks, log aggregation, exception

tracking and collection of key metrics.

Key metrics are captured by telemetry compo-

nent, while health checks are assured by using

anu received data as heartbeat signal; this en-

sures that all parties in the pool are in a ready-

80 Informatica Economică vol. 24, no. 4/2024

to-compute state, using the last heartbeat as an

effective eviction policy.

The remote logger component is responsible

for capturing console output of the running

workers, thus allowing effective monitoring

of the state of the system. These logs can then

be aggregated and filtered by using a standard

Elastic Stack, thus achieving a good level of

observability.

3 Real-World Applications and Future Di-

rections

The above framework presents an opinionated

method of developing and deploying edge

computing applications on a scale. Besides the

traditional IoT applications such as smart

homes and industrial automations, this frame-

work presents the user with the ability to per-

form large scale calculations in a distributed

manner on many heterogeneous devices.

This ability can be leveraged in multiple real-

world scenarios such as video processing, ML

inference, network analysis, and many others.

To dive deep into the video processing exam-

ple, the current computing model for such ap-

plications (e.g. YouTube) implies the transfer

of videos over the Internet to be encoded and

resized to a plethora of resolutions. This kind

of application is easily parallelizable, being

able to easily breakdown videos into chunks

and distribute it among multiple machines;

this would greatly speed up the encoding

speed but would not reduce the strain placed

on the network.

To summarize, this application has two major

cost components: the computing power, while

albeit seemingly infinite has a hefty price tag,

and the network component, where any infra-

structure project is in the billions range [15].

As such, the cost of supporting the ever-in-

creasing amount of user generated content is

bound to outpace the monetization potential of

those video.

This framework attempts to be an enabled to

continuous growth by bringing the computa-

tion closer to the user base. A tiered approach

can be implemented where the computation is

first performed on local devices (e.g. transmit-

ting data over LAN), with excess falling over

to devices in proximity (e.g. devices in the

same region as the user), ultimately offloading

it to the cloud if no other devices are available.

This model, depicted in Figure 7, shall greatly

reduce the network impact, with each chunk

being in transit for a lower amount of time.

Fig. 7. Video Processing application developed in OpenEdgeComputeFramework

Moving forward, a point of future development of this framework would consist

Informatica Economică vol. 24, no. 4/2024 81

in evaluating the performance against existing

solutions together with identifying current

bottlenecks. One such example would be re-

placing the usage Kafka with the lighter

weight MQTT protocol [16].

4 Conclusion

To summarize, this paper proposes a shift

from the current direction in edge computing

which leverages container runtimes to offer

platform agnosticism and offer runtime uni-

formity guarantees. OpenEdgeCom-

puteFramework proposes a leaner approach,

offering a slim Java Worker which can pull

application logic from a central repository, but

consuming less resources per worker than

other solutions, reusing the Java Runtime of

the host.

Framework initialization and worker coordi-

nation is performed by the Orchestrator, the

central component of the framework. This

module allows device discovery, careful

workload scheduling based on a continuously

updated device score and monitoring on initi-

ated tasks. All of this is done in a peer-to-peer

and decoupled manner by utilizing Kafka,

which adds fault tolerance to the solution.

The orchestrator is also responsible for creat-

ing new workers, always started on the local

machine either on its behalf or on the behalf

of another orchestrator. The worker process is

a slim wrapper around run-time loaded appli-

cation code which is responsible for transpar-

ently handling any framework abstractions

such as task updates, latent timers used to keep

the worker alive for a configurable amount of

time to improve cold-boot times, reporting

back to orchestrator, command marshalling

and many others. All the loaded application

logic is loaded in a centralized repository, in

this example an AWS S3 bucket, in the form

a signed jar file. The Java Archive is signed

by a certified signing authority to prevent ex-

ecution of malicious code, thus ensuring the

origin and integrity of the downloaded appli-

cation.

Playing a pivotal role in the good working of

the framework is the telemetry component,

which collects vital information about the

state of the host system such as available CPU,

RAM and flash storage, while also keeping

track of the running workers on the system.

This information is periodically emitted as an

event on the telemetry topic to be picked up

by all the other nodes participating in the pool,

which will become inputs in the computation

of the device score and will also act as a heart-

beat signal marking that the node is up and

healthy.

Observability is ensured by remote logger

component, which forwards all application

log to be later aggregated and visualized using

Elasticsearch.

To sum this all up, this paper proposes a

complete solution for edge-computing which

allows transparent orchestration of work

among different nodes, be them edge or

cloud, using lightweight worker nodes which

encapsulate Java application logic at startup

while also providing good observability over

the inner workings of the system.

References

[1] Akamai, "What is Edge Computing?,"

[Online]. Available: https://www.aka-

mai.com/glossary/what-is-edge-compu-

ting.

[2] K. Cao, Y. Lafiu, G. Meng and Q. Sun,

"An Overview on Edge Computing Re-

search," IEEE Access, vol. 8, 2020.

[3] Cisco, "VNI Complete Forecast High-

lights," 2021.

[4] M. Pollet, "EU looks to boost secure sub-

marine internet cables in 2024," Politico,

11 October 2023.

[5] Light Reading, "The future of the Internet

is underwater," Light Reading, 8 Decem-

ber 2022.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu,

"Edge Computing: Vision and Chal-

lenges," IEEE Internet of Things Journal,

vol. 3, no. 5, pp. 637-646, 2016.

[7] H. Hua, Y. Li, T. Wang, N. Dong, W. Li

and J. Cao, "Edge Computing with Artifi-

cial Intelligence: A Machine Learning

Perspective," ACM Computing Surveys,

vol. 55, no. 9, 2023.

[8] D. Silitonga, S. A. A. Rohmayanti, Z. Ar-

ipin, D. Kuswandi, A. B. Sulistyo and

Juhari, "Edge Computing in E-commerce

82 Informatica Economică vol. 24, no. 4/2024

Business: Economic Impacts and Ad-

vantages of Scalable Information Sys-

tems," EAI Endorsed Transactions on

Scalable Information Systems, vol. 11, no.

1, 2024.

[9] S. Yi, C. Li and Q. Li, "A Survey of Fog

Computing: Concepts, Applications and

Issues," Mobidata, 2015.

[10] EdgeX Foundry, "Why EdgeX?,"

[Online]. Available: https://www.edgex-

foundry.org/why-edgex/.

[11] Amazon Web Services, "What is

AWS IoT Greengrass?".

[12] Q. Deng, M. Goudarzi and R. Buyya,

"FogBus2: a lightweight and distributed

container-based framework for integration

of IoT-enabled systems with edge and

cloud computing," in International Work-

shop on Big Data in Emergent Distributed

Environments, 2021.

[13] Geekbench, "Geekbench Browser,"

[Online]. Available: https://browser.geek-

bench.com/.

[14] IBM, "What is observability and why

is it important?," [Online]. Available:

https://www.ibm.com/resources/auto-

mate/observability-basics.

[15] F. Khan, "The Cost of Latency,"

[Online]. Available: https://www.digi-

talrealty.com/resources/articles/the-cost-

of-latency.

[16] C. L. D. Ho, C. Lung and Z. Mao,

"Comparative Analysis of Real-Time

Data Processing Architectures: Kafka ver-

sus MQTT Broker in IoT," in 4th Interna-

tional Conference on Electronic Commu-

nications, Internet of Things and Big Data,

2024.

Andrei CAZACU has graduated the Cybersecurity Master Program, Bucha-

rest University of Economic Studies in 2022 and is currently pursuing a PhD

in the field of Fog-Edge Computing. Currently, he is activating as a software

developer in the payments field.

