
Informatica Economică, vol. 28, no. 4/2024 63

Continuous Resilience:

DevSecOps Strategies for Cloud and Quantum Platforms

Robert TICU-JIANU

Bucharest University of Economic Studies, Romania

ticujianurobert19@stud.ase.ro

The state of the technological landscape in the software development field has been in a

continuous change and evolution at a fast pace ever since its beginnings. Only a few decades

ago, the waterfall model was the best-in-class approach to the Software Development Lifecycle

(SDLC) with most projects and teams being on the smaller side and the industry still making its

baby steps. Nowadays, this approach is mostly seen as inefficient and adopted with disdain,

since many projects use some form of an agile methodology. By synthesizing theoretical

concepts with empirical evidence, this paper aims not only to investigate the benefits and

drawbacks of implementing a DevOps methodology in software products, but also to act as a

stepping stone for practitioners that want to accelerate the velocity with which a product goes

from requirements to the production environment, regardless of the nature of the product:

classic or quantum.
Keywords: DevOps, DevSecOps, Continuous Integration, Continuous Deployment, Resilience,

security, Quantum computing, Cloud computing

DOI: 10.24818/issn14531305/28.4.2024.05

Introduction

Ever since its apparition, the term DevOps

has always found itself under the aegis of the

infinity sign since it is a beacon of continuous

improvement of processes within the

Software Development Lifecycle (SDLC). It

is a methodology which brings together

multiple philosophies, processes and

practices, that when implemented within a

project, it offers a tremendous improvement in

terms of velocity and reliability of the

software creation, quality assurance and

delivery [1]. The term DevOps appeared as a

fusion between the terms “Development” and

“Operations”. It is sometimes used

synonymously with the term CI/CD, since

these are its 2 most important components:

Continuous Integration and Continuous

Delivery/Deployment. [2] The former denotes

the approach in which developers make small

changes to their code which are easier to test,

integrate and build, therefore streamlining

code changes, while the latter presents an

automated delivery of the product to testing

and deployment environments. [3]

Although considerable research has been

devoted to providing characteristics and

detailing the elements that constitute the

DevOps culture, rather less attention has been

paid to exactly makes it tick and how can a

newcomer be aided in his path of adopting the

culture. [1] While there is not a definitive

answer to “What is the best approach to

DevOps?” there are some milestones that can

be followed to achieve this culture’s

objective, like introducing the well-defined

stages of SDLC, disseminating a collaborative

culture between Developers, DevOps and

Testing teams, automating certain time-

consuming actions, monitoring the

implemented systems, collecting feedback

about the outcomes of the processes applied

and then using it to improve the approaches

followed. [3] [4]

The new DevOps approach was warmly

welcomed into many projects and companies

because it substantially improved the velocity

with which the teams were moving through

the SDLC, but usually moving at a faster pace

comes with a price: attention to detail. The

details that were omitted in this case mostly

belonged to the security field. Developers

embraced the quick pace, but have left

themselves completely out in the open to bad

actors while doing so. This is the moment in

which the new DevSecOps approach emerged

1

64 Informatica Economică, vol. 28, no. 4/2024

and fixed the shortcomings of the previous

ways. Although the DevOps and Security

principles might seem contradictory to one

another at first, in reality, they complement

each other perfectly [5].

DevOps is focused on the bigger picture,

accelerating the time to market of the product

and the agility with which the products go

through the SDLC, Security is observing the

minute details and making sure that there are

no cracks through which bad actors can

squeeze. The obvious downside of checking

all the steps is the amount of resources that

needs to be spent while doing so, but this is

exactly the biggest strength that the DevOps

principles bring: speed and efficient use of

resources. [6]

While these methodologies have seen the

spotlight for classical computing, in the recent

years a completely new perspective has

surfaced: quantum computing. It is a

transformative technology with huge potential

to revolutionize entire industries, representing

a pivotal moment in the history of computer

science. It reconstructs the fundamental

element of software development: the bit. In

quantum computing, it is replaced by the

qubit, which keeps the 2 possible states that

the regular bit had (0 and 1) and adds a new

third state known as a superposition [7] [8],

which represents 0,1 and all the other

positions that can be found in between. It also

introduces a new concept of bit entanglement,

in which 2 entangled qubits will always share

the same state. [9]

Since it is still in its infancy, the integration of

the quantum software development into the

mainstream development practices,

particularly the DevOps methodologies, has

been somewhat overlooked by developers and

organizations, since they have yet to fully

grasp the implications that the quantum

computing brings to the table. This paper aims

to address this oversight by offering a

platform that can address the scalability,

reliability and efficiency needs of quantum

software as well as classical one.

2 Literature Review

During the past two decades, a lot of

information has become available on the

practices of IT Operations and Development.

A longitudinal study of the DevOps

methodologies and the benefits offered by

them was conducted by Gene Kim, the co-

author of the book “The DevOps principles”

and a distinguished within the IT Industry,

renowned for his contributions to shaping the

discourse and best practices around software

development and IT operations. This study is

drawing inspiration from his available

literature as well as other seminal works from

prominent figures in the DevOps world, to

propose a strategy for developers seeking to

improve the velocity of their projects.

One of the main benefits highlighted in the

literature is the emphasis that DevOps puts on

collaboration and communication between the

development and operations teams. The

research of Kim, Behr and Spafford (2016)

[10] points out how removing the barriers and

breaking down the traditional silos that

formed between the two sides, help the entire

project in its development. By sharing goals

and responsibilities, DevOps encourages

frequent communication and feedback [11]

which directly translates to improved

efficiency and product quality [12] [13]

Another benefit identified is the significant

reduction of time that it takes for software

product to arrive on the market. According to

the State of DevOps Report [11], projects that

embrace these methodologies have shorter

development cycles, lower MTTR [14] (mean

time to recovery) and faster deployment

frequency. The feedback that the teams give

and receive is also more qualitative [15] and it

reaches each side faster thanks to the

improved communication. [11] This also leads

do a significant improvement of the code

quality [16], since most bugs or smelly code

are snuffed out by the quality assurance stage

in which peer reviewing and static code

analysis play a major role. [17]

Ultimately, all these benefits lead to an

increase in team performance [1] [18] and

costs reduction [19] [20] , since a lot of the

repetitive and synchronous tasks are now

either automated or broken down into smaller

steps with improved velocity, allowing the

Informatica Economică, vol. 28, no. 4/2024 65

developers to work with increased efficiency

and improving the value of the time spent on

a task. [21]

Table 1 - The evolution of the agility, cost and risk of software delivery [21]

Looking back on software products during the

years, we can observe how their costs and

penalties went down significantly, while their

agility only evolved. We can observe in

 that in the 1970s-1980s the SDLC could span

across 1 to 5 years just to release a product to

the public [21], the cost of such project could

be anywhere between $1M and $100M dollars

and the entire company was at stake if the

product did not succeed. In the uneventful

case in which the product flopped, most of the

times the companies went bankrupt, had to be

bought by another one or have massive

layoffs. Just a decade later, the stakes have

already lowered by a moderate amount: a

cycle would take somewhere between 3 to 12

months, the cost of such project would start

from $100k up to $10M, the risk was mainly

around the product line or the division that

was working on the product and the price of

failure mostly consisted in revenue missed or

it would cost the CIO/CTO their job.

Nowadays, thanks to the multitude of new

methodologies and technologies, the SDLC

time was massively cut down to 2 to 12 weeks,

the cost has shrunk to a range of 10k$-1M$

and the risk has been driven down to just

discarding a product feature. In case of failure,

the losses incurred by the company are

negligible. These are just some of the benefits

that came along with the Agile and DevOps

methodologies.

In spite of the widespread recognition of the

DevOps principles and their benefits,

companies are still slow to adopt these

transformations into their work. A quick

glance at the “Testing in DevOps 2022”

survey ran by mabl.com, which can be seen in

Fig. 1 - DevOps Transformation by Company

Size, shows us that only about 40% of large

enterprises (2000+ employees) have mostly or

fully adopted DevOps principles. In addition,

in small businesses or startups (1-100

employees) 22% of the employees were not

sure of the progress the company made with

adopting the methodology, while a staggering

32% only aspire to integrate it into their

workflows.

The slow pace at which companies are

adopting the DevOps methodology differs

based on the size of the company. Large

enterprises tend to have very complex

organizational structures that is usually paired

up with extensive bureaucracy and intricate

established processes. These structures often

cripple the swift acceptance of changes,

therefore, the biggest hurdle for them,

unsurprisingly is the slow rate at which

changes are accepted due to the internal

processes that create bottlenecks at multiple

points within the flow. This is then followed

by lack of internal expertise and technology

 1970s-1980s 1990s 2000s - Present

Era Mainframes Client/Server
Commodization and

Cloud

Representative

technology of the era

COBOL, DB2 on

MVS, etc

C++, Oracle,

Solaris, etc.

Java, MySQL, Red

Hat, Python, etc

Cycle time 1-5 years 3-12 months 2-12 weeks

Cost $1M-$100M $100k-$10M $10k-$1M

What is at risk The whole company
A product line or

division
A product feature

Cost of failure

Bankruptcy, sell the

company, massive

layoffs

Revenue miss,

CIO/CTO’s job
Negligible

66 Informatica Economică, vol. 28, no. 4/2024

limitations.

According to Fig. 2 - DevOps Obstacles by

Company Size, the challenges that small

businesses and startups face reflect the unique

dynamics and constraints that exist in such

organizations. In this context, resource

constraints and competing priorities are

common, therefore organizational inertia

appears and they tend to maintain status quo

until a compelling reason appears to change

directions. [10] This is also felt in the

budgetary constraints, as disposable resources

are scarce and they cannot afford to waste or

distribute unwisely the already limited budget.

Hence, for small businesses and startups, the

first spot is taken by the lack of prioritization

from the company to adopt changes, then next

spots are occupied by budget and

technological limitations and slow change

adoption. [19]

DevSecOps is a sophisticated and

comprehensive method of developing

software that integrates security protocols into

the DevOps workflow, guaranteeing that

security is ensured within all crucial

components of each stage of the software

development lifecycle. This shift in

perspective tackles the increasing demand for

secure agile development methods from the

beginning, as opposed to adding security

features later on. Through the integration of

security procedures into pipelines for

continuous integration and deployment

(CI/CD), DevSecOps fosters a mentality that

views "security as code," promoting the early

detection and correction of vulnerabilities.

The development, security, and operations

teams working together enhances the ability to

rapidly produce secured software, lowers the

risk of security breaches, and close-to ensures

regulatory compliance. As a result,

DevSecOps is an essential part of

contemporary software development

approaches since it enhances an organization's

overall security posture while streamlining

processes and speeding up delivery timelines.

The DevSecOps methodologies are innate to

the solution presented by this paper, by having

incorporated checks from the coding stage, up

to the deployment of the application.

Automated security scans such as static

application security testing and software

composition analysis are present within the

CI/CD and they offer the possibility to

identify vulnerabilities so early into the code,

that the technical debt become non-existent.

The deployed applications also benefit from

continuous monitoring and feedback, which

would detect and alert on security issues or

breaches.

Considering the context that is offered by the

Fig. 1 - DevOps Transformation by Company Size [32]

Figure 2 - DevOps Transformation by Company Size

Informatica Economică, vol. 28, no. 4/2024 67

previously presented state of the DevOps

methodologies in the IT industry, this study

proposes a strategy to fill the gap for software

teams which are lacking agility in their SDLC.

The literature reviewed also demonstrates the

numerous benefits that the DevOps

methodologies bring, ranging from: the

culture of collaboration [22] and

communication, encouraging experimentation

and innovation with low or negligible costs,

accelerated time to market, enhanced quality

and stability, and improved flexibility and

scalability of software products.

Due to its still nascent stage, the quantum

software development is prone to exhibit

noise-induced errors [23]. Factors like the

quantum decoherence (the systems are still

unstable and can be influenced by external

disturbances like electromagnetic radiation,

interaction between neighbouring particles,

temperature fluctuations etc), imperfections in

the fabrication of the qubits, gate operations

errors (the manipulation of the qubits can

exhibit inaccuracies in the control signals and

timings) or simply by the limited quantum

resources that are available at the moment.

[24]

Furthermore, the quantum Software

Development Life Cycle is more intricate than

those of regular software due to a handful of

factors. The quantum applications are heavily

reliant on the scarce hardware, therefore it is

coupled with the constraints that come with it:

limited qubits, high error rates, short

coherence times etc. The systems are noisy

and prone to errors, hence error correction

schemes are a vital part of the development,

adding more complexity to the process.

Before learning quantum algorithms, a strong

foundation of linear algebra, quantum

mechanics and optimization theory is

required, which makes the learning curve

relatively steep for newcomers. Because the

technology did not have time yet to mature,

the ecosystem around it is still in its beginning

phases. Development tools, simulators,

libraries, testing tools are all scarce resources

that developers can hardly grasp in the current

stage. [23]

Through factoring the nature of quantum

software development and its prerequisites,

this paper aims to demonstrate that quantum

applications could highly benefit from the

same benefits that DevOps methodologies

bring to classical computing: strict,

reproducible testing/vast validation

procedures (to combat noisiness), continuous

integration (reduces cycle length and risk of

integration bugs), continuous deployment

(scalability, deploy time, etc) and efficiency.

Currently some proposals for the integration

of the DevOps methodologies already exist,

an eloquent example being the work of I.D.

Fig. 3 - DevOps Obstacles by Company Size [32]

Figure 4 - DevOps Obstacles by Company Size [32]

68 Informatica Economică, vol. 28, no. 4/2024

Gheorghe-Pop et al. [25], in which the

“Quantum DevOps” concept is presented

along with its value and benefits. The paper

reminds the audience that while “quantum

advantage” is a palpable achievement, it

requires hefty resources and complex

topologies, hurdles that could be more easily

passed with the help of “Quantum DevOps”.

3 Practical Analysis

Software projects, like any other project that

aims to generate value, are usually complex

and require multiple teams to work together to

bring it to an end. In recent times, in IT

projects a new kind of team was added to the

landscape: The DevOps/DevSecOps team. It

is a team that kicks in before the developers

start their work. It starts by creating and

configuring all the environments that the

teams will be working in: from a repository in

the version control system to the biome in

which the solution will run. By having a

distributed SVC repo, the DevOps team

ensures that the codebase is properly set up for

version control, enabling efficient tracking of

changes and collaboration among developers.

It breaks down and eliminates the hurdles

faced by teams that are working

asynchronously and remotely, since there is

no longer a dependency on the other team

member’s work. Code can be changed,

versioned, review and merged whenever the

team deems appropriate. Next, the DevOps

team sets up the Continuous Integration and

Continuous Deployment (CI/CD) pipelines

depending on the needs of the developers.

This involves configuring automated

processes for building, testing, and deploying

the application, ensuring that code changes

are continuously integrated and deployed.

These steps require good communication

between developers and DevOps since the

scenarios can differ wildly depending on the

plans of the project. Infrastructure needs to be

deployed for both the testing environment as

well as the production one. The unit, smoke,

sanity and regression tests also need to be

available to the DevOps team so that the

automatization process can go smoothly.

Fig. 5 - Classic DevOps Approach

This approach creates a bottleneck on the

DevOps team, since the developers are not

able to automatically build, test and deploy

their code unless they:

1. Have a team of DevOps engineers

2. The DevOps team has done their due

diligence and set up all the processes of

automation

3. The pipelines are tested, available and

resilient.

Fig. 5 - Classic DevOps Approach reveals

why this approach inherently creates a

significant bottleneck within the DevOps

team, primarily because developers lack the

capability to autonomously build, test, and

deploy their code. This dependency on the

DevOps team manifests in several critical

ways:

Informatica Economică, vol. 28, no. 4/2024 69

• Developers are fundamentally reliant on

having access to a dedicated team of

DevOps engineers. These engineers are

essential for establishing and maintaining

the infrastructure and processes required

for automated operations. Without a

specialized DevOps team, developers

cannot proceed with automated tasks,

leading to delays and inefficiencies.

• The DevOps engineers ensure a very high

quality of the pipelines and the set-up of

all necessary automation processes. This

means ensuring that each step from code

integration to deployment is seamlessly

automated. Any errors in these processes

will lead to stalling the development

lifecycle and deadlocks where neither

team knows exactly which one caused the

issue

• The project is also required to pay a very

steep initial price in the kick off phase

compared to the pay as you go service

offered by the web platform. Establishing

a team of DevOps engineers requires not

only substantial financial investment in

terms of salaries and benefits but also

incurs costs related to recruitment,

onboarding, and ongoing training.

Fig. 6 - Resilient DevOps Solution Workflow

With the help of the presented DevOps

Resilient Solution for Cloud and Quantum

Computing, we can tackle all the

aforementioned drawbacks of the classical

DevOps approach with a regular CI/CD

Software and DevOps engineers’ team. The

approach highlights the collaboration between

developers and the provided DevOps platform

without the upfront effort at the beginning and

the costs of maintaining such mechanism,

similar to Fig. 6 - Resilient DevOps Solution

Workflow.

Since the platform is offered as a SaaS, the

project could start building, testing, analysing

and deploying their code since the first

commit of the developers. The only

prerequisites are the code written by the

developers and the tests they want to run on

their code. This completely removes the need

of a DevOps team since the process has been

automated by the platform. The web

application offers flexibility to the project of

switching technologies and the reliability of

the pipelines and the infrastructure with no

70 Informatica Economică, vol. 28, no. 4/2024

time wasted upon waiting for another team to

finish up their tasks. Every step is also

transparent to the developer since the

platforms offers feedback to the developer at

all times. The components that contribute to

the efficient running of the platform are

analysed in this paper.

3.1 Automation server

The backbone of this solution consists of a

Jenkins server, an open-source automation

server that allows for automatization of stages

from the SDLC such as building, testing,

deployment etc. In this scenario, it is used for

running the predefined pipelines by applying

the data from the user (code, build parameters,

tests, etc) to the existing templates for the

supported technologies (Open QASM, React,

.Net, etc.). The developer does not have direct

access to this server. The technologies

supported by the platform need to have a

specific pipeline template in the Jenkins

server which can be triggered remotely via the

Jenkins API. More supported platforms can be

added at a later time depending on the demand

for them.The Automation server is configured

for 2 main platforms: Web and Quantum. Each

of them has a few technologies supported,

each having stages that can be run: build,

analysis, test, and deploy.

3.2 Front-end portal

The automation server is interfaced to the user

through a ReactJS single web page

application. The developer can log into the

platform with his credentials or through

different social platforms like Google,

Facebook, GitHub, etc. Multiple options are

available to the user: build, test or deploy your

app. These choices require a link to a hosted

git repository that can be accessed and

downloaded by the server so that it can apply

the specified operations further. The user can

also provide build parameters, testing scripts

or deployment preferences. When the portal

has all the requested information, a pipeline is

started via the REST API of Jenkins for the

specified platform. The website

asynchronously checks the server for data and

prints in real-time the logs that are offered by

the job as well as the artifacts that are

produced: binaries, test reports, logs etc. In the

meantime, the monetization of the platform is

done through sheer use time of the computing

resources, meaning that the time of usage of

the runners is monitored. Upon the

completion or cancellation of the pipeline, the

duration in milliseconds is sent to a backend

that keeps track of the costs that a user incurs,

generating invoices that a user can afterwards

pay through Stripe. The platform incorporates

the best practices and architectural patterns for

resilient and scalable cloud solutions

presented by Cornelia Davis [26] such as CI,

CD, microservices, orchestration etc.

3.3 REST API

Everything is glued together by an ExpressJS

REST API that feeds data from the SQL

database to the web portal. The backend also

plays the role as a middleman between the

Auth0 user database and the SQL database

which holds the information about the users.

The usage time, costs incurred, invoices etc

are stored in this database correlated with

Auth0. The API is secured via JSON Web

Tokens provided by the Auth0 service based

on the user’s credentials/social accounts. To

further increase the security of the system, the

backend shall also act as a proxy between the

outside medium and all the internals of the

solution. For example, all requests that are

issued by the user from the web portal shall be

interfaced through the backend that will filter

out the malicious requests and will sanitize the

input that the automation server receives.

By providing a standalone DevOps platform

tailored specifically for developers, the paper

aims to alleviate the mentioned pain points by

empowering developers to independently

create, customize, and manage their CI/CD

pipelines without the need for extensive

DevOps expertise or external assistance. This

solution not only accelerates the software

delivery process but also promotes autonomy,

innovation, and efficiency within

development teams, ultimately driving

organizational success in today's dynamic

digital environment.

Informatica Economică, vol. 28, no. 4/2024 71

3.4 Auth0

It is a very popular IAM (Identity Access

management) platform that is used to provide

seamless signing in to the users with the help

of features like SSO (Single Sign-On), MFA

(multi-factor authentication), Social Identity

Providers Sign In (Google, Facebook,

GitHub, etc). It offers developers the

possibility to securely integrate a module for

user management, authorization, role

management, user grouping and many more

features, with ease and minimal impact on the

whole application. It also supports a multitude

of authentication protocols such as OAuth 2.0,

OpenID Connect, SAML etc and provides

developers with SDKs for most popular web

platforms as well as an extensive

documentation for them. Additionally, it

alleviates the developers of plenty of security

risks, such as: API Security, compliance with

security regulations such as GDPR, HIPAA

etc, Token Forgery, CSRF (Cross-site request

forgery) etc.

3.5 Stripe

Stripe is a widely used payment processing

platforms that helps businesses around the

world to accept payments over the internet. It

has an extensive suite of APIs, tools and SDKs

that allow for easy integration of billing,

revenue management and payment processing

for online businesses. It offers a wide range of

payment methods including digital wallets

like Google Pay, Apple Pay, credit and debit

cards, bank transfers and more. The

developers also benefit from other vital

features like fraud prevention, dispute

resolution, support for international

currencies and live support for both the

business as well as the customers regarding

their payments. It is a great bridge between the

developers that get to use a very accessible

technology and the project itself that benefits

oof a platform to monetise the work done.

4 Conclusion

This paper has explored the DevOps

methodologies, its benefits, prerequisites and

its applicability in the quantum and classical

software development, both domains which

still have a lot of room for more extensive

usage the aforementioned principles. The

agility, culture of collaboration, efficiency,

decreased time to market are just a few of

entries off the long list of improvements [27]

that could be brought into a software project

by just implementing a CI/CD platform and

following the guidelines provided not just by

DevOps principles, but DevSecOps. As long

as the field of quantum continues to evolve,

the assimilation of classical software

methodologies will be inevitable and it will

help in accelerating the exit of the quantum

computing from its nascent stage as well as

achieving its full potential. This is only the

first step towards a future where industries

will be revolutionised by the quantum

computing, accelerating innovation and

reshaping the possibilities of the computer

science and engineering worlds.

No matter the nature of the software (classical

or quantum), nor the organization (or its size)

that is developing it, by embracing the

DevOps culture and adapting its principles, a

project is positioned for better chances of

success in the current competitive and rapidly

changing environment. This paper leaves as a

proposal a comprehensive and noteworthy

architecture and implementation of a CI/CD

platform that serves both cloud and quantum

environments. By also including security

aspects within it, this solution aims to not only

improve process efficiency, but to also

increase reliability in such system and

ultimately opening the door for a wider use of

quantum technology. Finally, the current

research demonstrates that a well-executed

CI/CD platform may act as a spark for

innovation within the computer science

industry, which will allow developers to fully

utilize their resources in their development

lifecycles.

References
[1] W. P. Luz, G. Pinto and R. Bonifácio,

“Adopting DevOps in the real world: A

theory, a model, and a case study,” Journal

of Systems and Software, vol. 157, pp. 1-

16, 2019.

72 Informatica Economică, vol. 28, no. 4/2024

[2] R. Jabbari, N. bin Ali, K. Petersen and B.

Tanveer, “What is DevOps?: A

Systematic Mapping Study on Definitions

and Practices,” in Proceedings of the

Scientific Workshop Proceedings of

XP2016, Edinburgh, 2016.

[3] L. E. Lwakatare, P. Kuvaja and M. Oivo,

“Dimensions of DevOps,” in Agile

Processes in Software Engineering and

Extreme Programming, Cham, 2015.

[4] F. Erich, C. Amrit and M. Daneva,

“Report: DevOps Literature Review,”

University of Twente, Twente, 2014.

[5] H. Myrbakken and R. Colomo-Palacios,

“DevSecOps: A Multivocal Literature

Review,” in International Conference on

Software Process Improvement and

Capability Determination, Cham, 2017.

[6] T. A. Chick, A. Reffett, N. Shevchenko

and J. Yankel, “Modeling DevSecOps to

Reduce the Time-to-Deploy and Increase

Resiliency,” Carnegie Mellon University,

2021.

[7] R. S. Sutor, Dancing with Qubits: How

quantum computing works and how it can

change the world, Packt Publishing Ltd,

2019.

[8] M. Hirvensalo, Quantum computing,

Springer Berlin, Heidelberg, 2010.

[9] J. Vos, Quantum Computing in Action,

Simon and Schuster, 2022.

[10] G. Kim, K. Behr and G. Spafford, The

Pheonix Project, Portland: IT Revolution

Press, 2013.

[11] N. Forsgren, J. Humble and G. Kim,

Accelerate: The Science of Lean Software

and Devops, IT Revolution Press, 2018.

[12] B. Fitzgerald and K. J. Stol,

“Continuous software engineering: A

roadmap and agenda,” Journal of Systems

and Software, no. 123, pp. 176-189, 2017.

[13] A. Katal, V. Bajoria and S. Dahiya,

“DevOps: Bridging the gap between

Development and Operations,” in

International Conference on Computing

Methodologies and Communication,

2019.

[14] F. Joao, D. Adriano, R. Amaro, R.

Pereira and M. M. da Silva, “DevOps

benefits: A systematic literature review,”

Software: Practice and Experience, no. 9,

pp. 1905-1926, 2022.

[15] A. Mishra and Z. Otaiwi, “DevOps

and software quality: A systematic

mapping,” Computer Science Review, no.

38, 2020.

[16] M. Erder and P. Pureur, “Continuous

Architecture: Sustainable Architecture in

an Agile and Cloud-Centric World,”

Morgan Kaufmann, pp. 1-303, 2015.

[17] J. Humble and D. Farley, Continuous

Delivery, Addison-Wesley Professional,

2010.

[18] R. Jabbari, N. Bin Ali, B. Tanveer and

K. Petersen, “Towards a benefits

dependency network for DevOps based on

a systematic literature review,” Journal of

Software: Evolution and Process, pp. 1-

26, 2018.

[19] G. Kim, The Devops Handbook, Trade

Select, 2016.

[20] M. Hering and B. Ghosh, Devops for

the Modern Enterprise, Trade Select,

2018.

[21] A. Cockcroft, Velocity and Volume

(or Speed Wins), San Francisco:

FlowCon, 2013.

[22] J. Davis and R. Daniels, Effective

DevOps: Building a Culture of

Collaboration, Affinity, and Tooling at

Scale, O'reilly, 2016.

[23] J. Romero-Álvarez, J. Alvarado-

Valiente, E. Moguel, J. Garcia-Alonso and

J. M. Murillo, “Enabling continuous

deployment techniques for quantum

services,” Software: Practice and

Experience, pp. 1-25, 2024.

[24] M. A. Nielsen and I. L. Chuang,

Quantum Computation and Quantum

Information, Cambridge, 2012.

[25] I. -D. Gheorghe-Pop, N. Tcholtchev,

T. Ritter and M. Hauswirth, “Quantum

DevOps: Towards Reliable and

Applicable NISQ Quantum Computing,”

in IEEE, Taipei, 2020.

[26] C. Davis, Cloud Native Patterns:

Designing change-tolerant software,

Manning, 2019.

[27] A. Hemon, B. Lyonnet and F. Rowe,

“From Agile to DevOps: Smart Skills and

Informatica Economică, vol. 28, no. 4/2024 73

Collaborations,” Information Systems

Frontiers, pp. 927-945, 2020.

[28] C. Dotson, Practical Cloud Security,

O'reilly, 2019.

[29] B. Beyer, J. Petoff , C. Jones and N. R.

Murphy, Site Reliability Engineering,

O′Reilly, 2016.

[30] R. Kumar and R. Goyal, “On cloud

security requirements threats

vulnerabilities and countermeasures: A

survey,” Computer Science Review, pp. 1-

48, 2019.

[31] M. Daneva and R. Bolscher, “What

We Know About Software Architecture

Styles in Continuous Delivery and

DevOps?,” in Springer, 2020.

[32] mabl.com, “Testing in DevOps 2022,”

mabl, 2022. [Online]. Available:

https://www.mabl.com/reports/testing-in-

devops-2022. [Accessed 25 April 2024].

Robert TICU-JIANU is a graduate of the IT&C Security Master of the Faculty

of Cybernetics, Statistics and Economic Informatics within the Bucharest

University of Economic Studies. His research aims to further accelerate the

process of automating processes within the SDLC, regardless of whether the

projects are of classical or quantum nature. While doing so, he also puts a lot

of emphasis on the security aspects that need to be carefully addressed since his

signature of choice is defined by resiliency and robustness in both his solutions

and thoughts.

