
22 Informatica Economică, vol. 28, no. 4/2024

Transformative Advances in NLP and AI:

Charting the Evolution of Technology

Paul Gabriel TEODORESCU1, Silvia OVREIU1,2

1National Institute for Research & Development in Informatics - ICI Bucharest, Romania
2University Polithenica of Bucharest, Romania

paul.teodorescu@ici.ro, silvia.ovreiu@ici.ro

This paper attempts to enter the world of NLP (human language processing) from the three

perspectives of physics, mathematics and computer science. The article explains why science

has chosen word-vectors and word vectorization in NLP and describes the 2 models that have

established themselves in this world of words: Word2Vec and GloVe. After having a clear pic-

ture of how artificial intelligence deals with words and human language processing, the topics

of Time and Attention are treated in the new approach of Google which has already moved to

another paradigm in word processing: the BERT models, transformers and Attention mecha-

nisms. This answers the questions why Time and temporal recurrence have been abandoned in

favor of models with transformers and Attention mechanisms. The paper also includes an ex-

planation of the complex processes that take place inside the Transformer for a simple transla-

tion from one language to another.

Keywords: Human language processing, Artificial Intelligence, Transformers, Attention

DOI: 10.24818/issn14531305/28.4.2024.02

Introduction

In human language processing, science

has chosen the vectorization of words to re-

solve relationships between words. The mean-

ings of a word could be represented by real

numbers, numbers which are part of the list of

values that represent a vector. The beauty of

representing words as vectors lies in the pos-

sibility of doing mathematical operations with

words. With vector words, a huge technologi-

cal leap has been made towards speech recog-

nition and machine translation. Moreover, it

was necessary to interpret the vector transfor-

mations mathematically. This was done with

the help of matrices: a matrix represents a

given transformation of vectors and hence

transformation of space. The semantic simi-

larity of words (semantic similarity or contex-

tual similarity of words) was also solved with

vectors, which is nothing but the degree of

similarity between two vectors in a multidi-

mensional space.

In order to capture the semantic meaning of

words in a mathematical way and to transform

words into a form that computers can under-

stand and manipulate, various techniques have

been used. The present paper discusses these

techniques - Word2Vec and GloVe - and then

explains the transition to the new paradigm in

NLP that gives up TIMP and RNNs ((Recur-

rent Neural Networks) by using Transformers

and the Attention mechanism. The new motto

in NLP becomes "Attention is all you need".

The evolution of models has nowadays

reached the BERT model developed by

Google which allows the model to better cap-

ture semantic relationships and dependencies

between words.

2 Vector representation of words in three

perspectives

The vector underlies linear algebra. There are

3 distinct but related ideas about vectors as

seen from 3 perspectives: physics, mathemat-

ics and computer science.

From the physics perspective (Figure 1, a): the

vector is an arrow in space, defined by its

length and the direction in which it points.

Vectors in a 2-dimensional space are vectors

of 2 dimensions, vectors in a 3-dimensional

space are vectors of 3 dimensions. In a 2 di-

mensional plane, the first example of a vector

space consists of arrows in a fixed plane,

starting at one fixed point. This is used in

physics to describe forces or velocities.

1

mailto:paul.gabriel.teodorescu@gmail.com
mailto:silvia.ovreiu@ici.ro
https://en.wikipedia.org/wiki/Arrow_(symbol)
https://en.wikipedia.org/wiki/Plane_(geometry)
https://en.wikipedia.org/wiki/Force
https://en.wikipedia.org/wiki/Velocity

Informatica Economică, vol. 28, no. 4/2024 23

a) Physics perspec-

tive

b) Mathematical perspective c) Computer science
perspective

Fig. 1. Vector representation in 3 perspective

From a mathematical perspective (Figure 1,

b): generalizing, vectors can be added or a

vector can be multiplied by a number. From

the geometric perspective, a vector is an arrow

in an Oxy coordinate system, for example an

arrow with its end at the very origin of the

axes O. Physicists consider this vector any-

where in this space, but in linear algebra the

vector has its end at the origin of the axes.

Thus, the vector can be translated as a list-of-

numbers realized by considering the coordi-

nates of the vector. To differentiate a point in

space from a vector in space, round brackets

are used for points and square brackets for

vectors (Figure 2, a). When referring to the di-

mensional plane, each pair of numbers means

one vector and one vector only. A vector has

one and only one pair of numbers associated

with it. Extrapolating to 3-dimensional space,

there are 3 axes, Ox, Oy, Oz (Figure 2, b). A

vector space can have many bases (even an in-

finity of bases), the dimension of the vector

space is given by the number of vectors of the

base (Figure 3, a).

a) In 2-dimensional space b) In 3-dimensional space

Fig. 2. Geometric representation

From a computer science perspective (Figure

1, c): vector is an ordered list of numbers. Ma-

trices describe the transformations of vectors:

whenever a matrix is encountered, it can be

interpreted as a certain transformation of the

space. These transformations can only be de-

scribed with numbers, which are the coordi-

nates where each “basis vector” (an element

of a set of vectors that forms a basis for a vec-

tor space), arrives after the space transfor-

mation (Figure 3, b). The columns of the

matrix (which are linearly dependent) repre-

sent the coordinates and the matrix × vector

multiplication is just a way to compute what

the new vector has become after the space

transformation (LTM, 2023). So, matrices can

be used to change the basis of a vector space.

If A is a matrix whose columns are the new

basis vectors, multiplying A by a coordinate

vector x expresses the same x but in the new

basis.

24 Informatica Economică, vol. 28, no. 4/2024

a) In 2-dimensional space b) In 3-dimensional space

Fig. 3. Linear transformation with spatial transformation

After establishing the three perspectives on

vectors and examining their transformations

through matrices, we will present how to

compute the similarity between two vectors

in space. Two methods are known, using the

Euclidean distance and cosine similarity. For

example, if we consider vectors A = (3, 8, 7,

5, 2, 9); B = (10, 8, 6, 6, 6, 4, 5), then we cal-

culate the similarity (A, B), i.e. the degree of

similarity of the two non-zero vectors in the

vector space, using the relation:

Since cos 0 = 1 and cos 90 = 0, this means

that: two vectors with a cosine similarity of 1

have the same orientation; two perpendicular

vectors have a similarity of 0.

3 Word-Vector mapping

Words-vector are simple vectors [1]. Vectors

are translated by a list of real values/numbers

where each value expresses one dimension of

the meaning (or sense) of that word, so seman-

tically similar words have similar vectors.

Words that are used in a similar context will

be mapped next to each other in the vector

space. This opened the way to the possibility

of doing mathematical operations with words.

The numbers in the word-vector represent the

weights of that word for the senses/meanings

of that word, and each meaning of the word

represents a dimension of the word: the higher

the weight, the more that word is associated

with that meaning/sense. This is how the se-

mantics of the word is "embedded across the

dimensions of the vector". Hence the notion of

“word embedding”.

Word embedding aims at creating a vector

representation with the lowest spatial dimen-

sionality. This is what is called “word vector-

ization” resulting in word vectors. Word

vectorization is also used for semantic analy-

sis, to extract a meaning, a sense from the text

which is in fact the expression of natural lan-

guage. A language model capable of predict-

ing the meaning of a text must consider the

contextual similarity of words [2]. For exam-

ple, words that define fruits (apples, oranges)

are found in sentences where they are picked,

grown, eaten, etc. but will not be in proximity

to the word "airplane". The vectors created by

word-vector mapping preserve these similari-

ties so we can say that word embedding is the

construction of a vector representation from a

corpus of text that preserves the contextual

similarity of words. The problem of semantics

or semantic similarity has, as its central idea,

the hypothesis (called the distributional se-

mantics hypothesis) that linguistic elements

with the same distribution, in the vector space,

have the same meaning (similar distribution

means similar meaning).

A surprising property of word vectors is that

word analogies are solved by vector arithme-

tic. The "difference" relation between vectors

is interesting because it allows us to discover

relations that show an analogy, a similarity:

the similar direction indicates such a relation

of two pairs of vectors.

Informatica Economică, vol. 28, no. 4/2024 25

4 Word-vector construction algorithms

The most popular word-vector mapping con-

struction algorithms are Word2Vec and

GloVe.

Word2Vec is the word-vector mapping con-

struction algorithm, a statistical method in

which a neural network learns to guess a word

from a text [3]. Input words are passed to the

network as a binary vector. The binary vectors

will then pass through a hidden layer of cells,

then into an output layer called the softmax

layer (since it uses the Softmax activation

function) to make a prediction [4]. The weight

matrix is trained on the hidden layer to find an

efficient representation of the words. This

weight matrix is usually called the embedding

matrix and can be viewed as a look-up table:

For example, having a vocabulary of 10000

words, where each word in the vocabulary is

represented by a 300-dimensional vector, the

weight matrix is 10000 × 300. The input

words in the matrix enter as a binary vector in

the one-hot encoded representation. One-hot

encoding is a type of binary vector represen-

tation where each word in the vocabulary is

represented by a vector that has the same

length as the size of the vocabulary. In this

vector, all values are 0 except for a single 1 at

the index corresponding to that word. For ex-

ample, for a vocabulary of 10,000 words, the

word at index 5 might be represented as “[0,

0, 0, 0, 1, 0, 0, ..., 0]”. In Figure 4

[5], as another example, after training a vocab-

ulary of 10,000 words, the word "ant" is rep-

resented as 1 in a specific position. The net-

work is going to tell us the probability for

every word in our vocabulary of being the

nearby word that we choose.

 Fig. 4. Neural network with a hidden layer having 300 neurons

Each word therefore has a vector associated

with it. The mapping size (hidden layer size)

is actually chosen by the model builder (the

researcher) and represents the number of sim-

ilarities between words, i.e. it is the number of

features representing the number of similari-

ties between words. It is much smaller than the

size of the single word vocabulary and, as was

mentioned, is chosen by the researcher. The

larger this number, the better the model will

potentially be.

Two methodologies are known to implement

Word2Vec called contextual representations:

• CBOW (Continuous Bag-of-Words) - the

model learns the word-vector mapping

and predicts the current word based on its

context. It considers a word (label) to-

gether with its surrounding words (which

actually form the context). These words

feed the neural network and are used to

predict the target word.

26 Informatica Economică, vol. 28, no. 4/2024

• Skip-Gram - the model learns to predict

words around the current word. In other

words, it does exactly the opposite: given

a target word, it predicts the words around

that word (it predicts the context).

Both models work with neural networks that

learn words based on local context of use. The

context is defined by a "window" of neighbour

words. This "window" is a configurable pa-

rameter of the model, and its size has a strong

effect on the similarity of the resulting vector:

a large "window" tends to produce topic-

based similarity while small "windows" pro-

duce functional and syntactic similarity.

Advantages of Word2Vec are:

• efficient and high-quality mappings;

• large mappings from billion-word cor-

pora.

GloVe, the second algorithm presented here,

has an interesting approach for producing

word-vectors: it is based on counting words

vis-à-vis of context [6]. It builds a matrix that

will reflect/count how many times a word ap-

pears in a context. It no longer uses a "win-

dow" of words to define the local context. In-

stead, it builds an explicit word-context ma-

trix (a matrix that reflects the number of oc-

currences of a word in a context), using statis-

tics over the entire text corpus. The result is a

learning model that sometimes leads to word

mappings that are considered better. GloVe

uses a matrix in which each row represents a

word and each column represents a context. In

a given context, words may or may not appear.

The matrix values represent the frequency of

occurrence of each word in a given context.

After applying a matrix size reduction, the re-

sult will be the word-vector mapping: each

row will actually be the vector of that word. In

figure 5, an example is shown where the con-

texts are: I like flying; I enjoy flying; I like

NLP; I like deep learning.

 Fig. 5. Glove matrix

Stanford University has created a huge set of

GloVe-derived word-vectors on a text from

Wikipedia, with a tokenization process built

on a vocabulary of 400,000 most-used words.

These vectors can be downloaded online by

choosing the desired size for them: 25, 50,

100, 200.

The Word2Vec and GloVe models are similar

in the way they work. Both aim to construct a

vector space in which the position of each

word is influenced by its neighboring words

based on their context and semantics.

Word2Vec uses local individual examples of

pairs of repeated occurrences of words and

GloVe uses global statistics of repeated occur-

rences, aggregated over all words in the vo-

cabulary. Table 1 mirrors the characteris-

tics/differences between the two algorithms.

Informatica Economică, vol. 28, no. 4/2024 27

Table 1. Word2Vec and GloVe features

Word2Vec GloVe

Predictive model.

Uses a feed-forward neural network.

It is using a local context: when an unknown

word shows up, the model gets confused and

will try to find his embeddings in its vocab-

ulary.

It is a static and not a dynamically generated

embedding.

Model based on counting (count-based

model).

Does not use a neural network.

Creates a global co-occurrence matrix, esti-

mating the probability that a given word co-

occurs with other words.

Requires up-front processing of the entire

dataset.

To conclude, in our days, when talking about

contextualized embeddings it is usually un-

derstood that we are talking about embeddings

that dynamically change depending on the

given context. This is done by using models

such as BERT (as we’ll see later in this paper),

which are trained on large amounts of text

data and can generate embeddings that capture

the meaning of a word based on its context.

5 Encoder-decoder architecture for the

transition to the new paradigm

The encoder-decoder architecture [7] is a fun-

damental concept in machine learning and

natural language processing (NLP), and it is

used in several types of neural network mod-

els, in particular in the context of recurrent

neural networks (RNNs), convolutional neu-

ral networks (CNNs) and text-generating

models [8]. The encoder-decoder architecture

is based on the idea of transforming an input,

encoding it and providing a corresponding

output, a process used in a variety of applica-

tions such as machine translation, text sum-

marization, text generation, speech recogni-

tion, etc.

In this architecture, LSTM cells are used to

solve the so-called "gradient vanishing" prob-

lem for longer sequences of data, with

memory being kept for the long sequences.

The encoder processes an entire sentence

word by word. The data is passed sequentially

one after the other creating so-called "depend-

encies" between the previous state and the

current state. The word embedding process is

generated in different time steps, one by one.

The inputs and outputs are done in ordered

lists of numbers (in sequences). Recurrent net-

works are used in the encoder and also in the

decoder (Figure 6). The ENCODER network

takes a sequence as input and creates an en-

coded representation from it. The second net-

work is the DECODER network which takes

as input the output of the first network i.e. the

encoded representation. It generates an output

sequence by decoding it.

The architecture can be approached in 2 ways:

• or let the encoder network learn the word-

vector mapping from scratch, feeding it

with training data,

• or use pre-trained mappings.

Fig. 6. Encoder-Decoder sequence-to-sequence

28 Informatica Economică, vol. 28, no. 4/2024

This architecture has some drawbacks: the se-

quential nature of the RNN-utilization slows

down GPU computation. Even though LSTM

cells possess a long memory, still memorizing

things over a long period of time is challeng-

ing for them. It works with fixed-size vectors

(word vectors and context vectors) that may

not contain all relevant information.

6 Transformer and Attention mechanism -

the new paradigm in human language pro-

cessing

In this new paradigm, TIME has been

dropped: temporal recurrence has been re-

placed by Attention, in natural language pro-

cessing with deep learning technology. The

transformer was introduced in 2017. Like re-

current neural networks (RNNs), transformers

are designed to handle ordered sequences of

data, like natural language, for various tasks

such as machine translation and text summa-

rization (extracting the most relevant infor-

mation from a text) [9].

However, unlike RNNs, transformers do not

require the sequence to be processed in order.

So, if the data in question represents natural

language text, the transformer does not need

to process the beginning of a sentence before

processing the end. Because of this feature,

the transformer allows much more paralleliza-

tion than RNNs during training. In other

words, all the processes that were solved by

recurrent networks together with LSTM cells

are now solved simultaneously rather than se-

quentially. Since their introduction, trans-

formers have become the basic building

blocks of most state-of-the-art architectures in

NLP, replacing in many cases the models

based on recurrent neural networks with in-

put/output gates (more specifically LSTM

cells). Since the architecture of transformers

allows for more parallelization during training

computations, it has become possible to use a

much larger amount of data than was possible

in the past before this architecture was intro-

duced.

The architecture is based on neural networks

(with zero recurrence) and a mechanism

called Attention. At the heart of the Attention

mechanism is the idea of allowing the decoder

to "look back" at the input and extract im-

portant information to be used in the decoder.

The transformer allows both the Encoder and

the Decoder to see the entire input sequence,

all at once. The transformer does not require

that the sequence be processed in order. If the

data in question represents natural language

text, the Transformer does not need to process

the beginning of a sentence before processing

the end. The Transformer allows paralleliza-

tion: words are processed all at once, in paral-

lel. "Attention is all you need" [10]: no more

LSTM cells, no more cell state, no more re-

current networks. TIME is dropped: temporal

recurrence has been replaced by Attention.

Transformers preserve word order through the

use of “positional encoding”. Unlike recurrent

neural networks (RNNs) or convolutional

neural networks (CNNs), transformers do not

inherently understand the order of words in a

sequence because they process the entire input

simultaneously rather than sequentially. To

enable the transformer model to incorporate

the order of words, positional encodings are

added to the input embeddings. These encod-

ings are designed to provide information

about the position of each word within the se-

quence. The positional encoding vector is

added to the word embedding vector.

Each word is mapped to a vector but the same

word in different sentences can have different

meanings. That's why the positional encoder,

which is also a vector, has emerged. This new

vector provides a context based on the posi-

tion of the word in the sentence. Let's illustrate

how positional encoding helps a transformer

understand the word order with a concrete ex-

ample.

Consider the word "bank" in two different

sentences:

1. "I went to the bank to deposit money."

2. "The river bank was overflowing after the

rain."

Without positional encoding, the transformer

would see the same embedding for "bank" in

both sentences and might struggle to disam-

biguate the meaning based solely on the con-

text provided by the surrounding words. Now

Informatica Economică, vol. 28, no. 4/2024 29

we combine the word embeddings with their

respective positional encodings by simply

adding them together. For the word "bank" in

both sentences:

1. In "I went to the bank to deposit money."

(position 4):

• If word embedding for "bank" is: [0.4,

0.4, 0.4]

• and if positional encoding at position 4

is: [−0.7568, −0.6536,0.0335]

• the combined embedding will be their

sum:

[0.4,0.4,0.4]+[−0.7568,−0.6536,0.0335]

=[−0.3568,−0.2536,0.4335]

2. In "The river bank was overflowing after

the rain." (position 2):

• Word embedding for "bank":

[0.4,0.4,0.4]

• Positional encoding at position 2:

[0.9093, −0.4161,0.0168]

• Combined embedding: [0.4,0.4,0.4] +

[0.9093, −0.4161,0.0168] =

[1.3093, −0.0161,0.4168]

Interpretation: The combined embeddings for

"bank" are now different in the two sentences

due to the added positional information. This

allows the transformer to distinguish between

the two usages of "bank" based on their posi-

tions and surrounding context. Positional en-

coding helps the transformer model incorpo-

rate word order into its understanding of the

text. By adding these encodings to the word

embeddings, the model can better capture the

context and meaning of words in different po-

sitions within a sequence.

After the sentence goes through the embed-

ding process and the position encoder is ap-

plied, new vectors are obtained having infor-

mation about their position in the sentence,

which translates to CONTEXT. These vectors

(containing context info) pass through the En-

coder block (Figure 9). Here, there are several

layers/processes in which Attention inter-

venes, and then a layer that contains a feed-

forward neural network (the simplest neural

network). The feed-forward network is an im-

portant component of the Transformer: each

Attention vector passes through this network

that brings it to a suitable form for the next

block of the encoder or decoder. Attention in-

volves answering the questions: "which part

of the input sentence should you focus on?";

"how relevant is a certain word (at a certain

position in the sentence) to the other words in

the same sentence?".

RNNs have realized a generic system where,

with only a few lines of code, translation from

one language to another language has been

achieved, even with the help of context taken

from English. However, RNNs have the fol-

lowing problem: when generating more than

1000 - 2000 words, the state of the cells and

the gating processes of the LSTM cells (gating

process) make the gradient vanished (van-

ished gradient) because these cells do not have

such a long memory. In these neural networks

that translate sentence after sentence (sen-

tences sometimes as long as 40-60 words), to-

ken after token translation is successful, but

the problem is that they do not "copy" human

thought: when humans speak, they think about

the context. For example, when someone is

talking to a friend, they may be referring and

thinking about something they discussed 20

years ago, and the interlocutor knows what it

is about. This is long-term dependencies [11].

The processes inside the Transformer (Fig. 7,

[12]) for a simple translation of a text from

English into Romanian are [13]:

• In the Encoder, the English sentence is

vector mapped (with Word2Vec also

solving the semantics of the sentence) and

then, to these vectors, are added the posi-

tional vector, to get the context of the

word in that sentence. The attention vec-

tors are constructed and processed here,

for each word. The attention vector anal-

yses its relationship to itself and to other

words, resulting in, for example, 8 atten-

tion vectors for a 4-word phrase. These

vectors are then averaged to obtain the fi-

nal attention vector for each word.

• The Decoder receives the Romanian

phrase. Because the phrase was mapped

into vectors, the decoder receives num-

bers, vectors and matrices. Then adds the

position vector to get the context of the

word in the phrase. The decoder has 3

main components of which two are

30 Informatica Economică, vol. 28, no. 4/2024

similar to the encoder. The self-attention

block generates attention vectors for each

word in the sentence to represent the rela-

tions between words: how dependent is a

word with other words in the sentence.

These attention vectors together with the

vectors from the encoder are passed to an-

other attention block (called Encoder-De-

coder Attention). This block determines

how related (dependent) the vectors are to

each other. At this point we are basically

mapping the two languages English and

Romanian. The output of this block is the

attention vectors for each word in the 2

languages, but each vector represents (re-

flects) the relations to the other words in

both languages. These new attention vec-

tors are then passed to a unit through a

fast-forward neural network to make

them more fitted for the linear layer.

Fig. 7. The Transformer

The linear layer is nothing more than another

fast-forward network that equalizes the size of

the vectors to that of the number of words in

the Romanian language. It then passes into the

Softmax layer which transforms everything

into a probabilistic distribution easily inter-

pretable by humans. The output is a Romanian

word with the highest probability. And so, the

decoder predicts the next word in the sen-

tence. The process is repeated many times (for

each Romanian word in the sentence) until the

end is reached. The first attention block in the

Decoder is also called the "masked attention

block": while all the words in the English sen-

tence can be used to generate the next Roma-

nian word, only the words preceding the next

Romanian word in the English sentence are

used to generate the Romanian words. If all

the words of the Romanian sentence were

used, there would be no such thing as network

Informatica Economică, vol. 28, no. 4/2024 31

learning: the network would output the next

word without learning anything. While work-

ing in parallel on matrix operations, the matri-

ces must mask the later words by turning them

into zeros so that the attention network cannot

use them. The Transformer model achieves

referencing based on content rather than

strictly relying on the position of words. This

is one of the key innovations and advantages

of the Transformer architecture, particularly

through its use of self-attention mechanisms

[14]. The self-attention mechanism allows

each word in a sentence to attend to all other

words in the sentence. This means the model

can weigh the relevance of each word in rela-

tion to every other word. Attention scores are

calculated based on the content of the words,

allowing the model to focus on semantically

important parts of the input regardless of their

position. Each word is represented as a query,

key, and value vector. Unlike RNNs, which

process words sequentially, transformers pro-

cess the entire input simultaneously. This en-

ables them to understand relationships be-

tween distant words without being biased to-

wards word order. By referencing content ra-

ther than position, the transformer can more

accurately understand the context and mean-

ing of words in various positions, improving

tasks such as translation, text summarization,

and question answering. This content-based

referencing is a powerful feature that distin-

guishes transformers from traditional sequen-

tial models like RNNs and enables them to

handle complex linguistic phenomena more

effectively. It is important to mention another

crucial technique used in the Transformer

model (only in the Decoder, just before apply-

ing the Softmax function): masking. This is

necessary to ensure that certain information is

either hidden or highlighted during the train-

ing and inference processes. In a future article

we intend to explain in details how masking is

applied (to the Attention mechanism) to pre-

vent the Attention mechanism of a trans-

former from “cheating” in the decoder when

training, like is happening in a translating task

for instance. For now, is enough to understand

that the Attention mechanism looks at all the

past information and it is able to consider a

very long context. This is one of the main rea-

sons why the Transformer model has become

so successful, especially in natural language

processing tasks. It has a powerful way to cap-

ture long-range dependencies and build a

comprehensive contextual understanding.

7 Conclusions

This paper traced the evolution of NLP tech-

nology, beginning with the early days of com-

puting when words were associated with and

transformed into numerical representations in

vector space. This enabled computer models

to handle words mathematically, facilitating

the analysis and processing of their semantic

meanings. Building on this, techniques like

Word2Vec, which converts words into vectors

based on their context within a corpus, and

GloVe, which derives vector representations

from word co-occurrence in a corpus, were

developed.

https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/
https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/

32 Informatica Economică, vol. 28, no. 4/2024

Fig. 8 The evolution of technology in NLP world

From this point, it was just a short step to the

revolution of AI models in natural language

processing. This step was marked by the

emergence of Transformers, embodying the

new philosophy of "Attention Is All You

Need.". Outstanding examples of cutting-edge

language processing technology include the

chatbot robots ChatGPT (developed by

OpenAI) and BERT (developed by Google,

[15]. It is important to note that the evolution

in NLP is rapid and new developments may

appear at any time. The past and present

Informatica Economică, vol. 28, no. 4/2024 33

evolution of architectures is visualized in Fig.

8.

References

[1] L. . F. Campanile, S. Seltmann and A.

Hasse, "A measure for the similarity of

vector spaces," 2021.

[2] C. Lala, "Word vector-space embeddings

of natural language data over time," 2014.

[3] D. Widdows and T. Cohen, "The Semantic

Vectors Package: New Algorithms and

Public Tools for Distributional Seman-

tics," in IEEE Fourth International Confer-

ence on Semantic Computing, 2010.

[4] S. Kulshretha and L. Lodha, "Performance

Evaluation of Word Embedding," Interna-

tional Journal of Innovative Science and

Research Technology, vol. 8, no. 12,

2023.

[5] Chris McCormick Word2Vec Tutorial,

https://medium.com/nearist-ai/word2vec-

tutorial-the-skip-gram-model-

c7926e1fdc09".

[6] J. Pennington, . R. Socher and C. D. Man-

ning, "GloVe: Global Vectors for Word

Representation," in Proceedings of the

2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP),

Doha, October 25-29, 2014.

[7] Encoders-Decoders, Sequence to Se-

quence arhitecture, https://me-

dium.com/analytics-vidhya/encoders-

decoders-sequence-to-sequence-architec-

ture-5644efbb3392".

[8] M. Silfverberg and M. Hulden, "An En-

coder-Decoder Approach to the Paradigm

Cell Filling Problem," in Proceedings of

the 2018 Conference on Empirical Meth-

ods in Natural Language Processing,

Brussels, Belgium, 2018.

[9] A. Gireesh and A. Joseph, "Unveiling the

Transformer Revolution," Proceedings of

National Seminar on Artificial Intelli-

gence & Machine Learning, November

2023.

[10] V. Ashish, S. Noam, P. Niki, U. Jakob

, . J. Llion, G. N. Aidan and K. Lukasz ,

"Attention is all you need," in Conference

on Neural Information Processing Sys-

tems, Long Beach, CA, USA, 2017.

[11] "Understanding LSTM Networks,"

2015.

[12] F. Elmenshawii, "Introduction to

Transformers - Machine Translation,"

2024.

[13] M. Lewis, . Y. Liu and N. Goyal,

"BART: Denoising Sequence-to-Se-

quence Pre-training for Natural Language

Generation, Translation, and Comprehen-

sion," Computation and Language, 2019.

[14] . X. Amatriain, "How do transformers

work in NLP," 2023.

[15] L. Steven, "Levy, Steven. "8 Google

Employees Invented Modern AI. Here's

the Inside Story", ISSN 1059-1028.".

Paul TEODORESCU is an Engineer with an international background in

engineering and IT. He has worked in IT field in Romania and Canada.

Specializing in databases, PL/SQL, Oracle, Data Warehousing, Business

Intelligence, Artificial Intelligence (Machine Learning, Artificial Neural

Networks, Natural Language Processing), he studied and worked for 11

years in Canada. He is currently working at Computer Science Research

Institute in Bucharest - ICI - as a research scientist and is involved in Arti-

ficial Intelligence, NLP and GIS projects.

34 Informatica Economică, vol. 28, no. 4/2024

Silvia OVREIU is PhD in Deep Learning at the Faculty of Electronics,

Telecommunications and Information Technology at the University

Politehnica of Bucharest, with the thesis titled "Retinal Image Analysis

using Deep Learning Algorithms." She was involved in research within the

UPB Proof of Concept 2020 Project and served as a research assistant. She

was the principal investigator of the SAIGHT project (Software for Auto-

matic Analysis of Ocular Images). The main goal of the project is to create

a platform based on Deep Learning for the automatic analysis and diagno-

sis of ocular diseases such as glaucoma. She is involved in organizing the

International Summer School on Imaging with Medical Applications (SSIMA).

