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Introduction 

In human language processing, science 

has chosen the vectorization of words to re-

solve relationships between words. The mean-

ings of a word could be represented by real 

numbers, numbers which are part of the list of 

values that represent a vector. The beauty of 

representing words as vectors lies in the pos-

sibility of doing mathematical operations with 

words. With vector words, a huge technologi-

cal leap has been made towards speech recog-

nition and machine translation. Moreover, it 

was necessary to interpret the vector transfor-

mations mathematically. This was done with 

the help of matrices: a matrix represents a 

given transformation of vectors and hence 

transformation of space. The semantic simi-

larity of words (semantic similarity or contex-

tual similarity of words) was also solved with 

vectors, which is nothing but the degree of 

similarity between two vectors in a multidi-

mensional space.  

In order to capture the semantic meaning of 

words in a mathematical way and to transform 

words into a form that computers can under-

stand and manipulate, various techniques have 

been used. The present paper discusses these 

techniques - Word2Vec and GloVe - and then 

explains the transition to the new paradigm in 

NLP that gives up TIMP and RNNs ((Recur-

rent Neural Networks) by using Transformers 

and the Attention mechanism. The new motto 

in NLP becomes "Attention is all you need". 

The evolution of models has nowadays 

reached the BERT model developed by 

Google which allows the model to better cap-

ture semantic relationships and dependencies 

between words. 

 

2 Vector representation of words in three 

perspectives 

The vector underlies linear algebra. There are 

3 distinct but related ideas about vectors as 

seen from 3 perspectives: physics, mathemat-

ics and computer science.  

From the physics perspective (Figure 1, a): the 

vector is an arrow in space, defined by its 

length and the direction in which it points. 

Vectors in a 2-dimensional space are vectors 

of 2 dimensions, vectors in a 3-dimensional 

space are vectors of 3 dimensions. In a 2 di-

mensional plane, the first example of a vector 

space consists of arrows in a fixed plane, 

starting at one fixed point. This is used in 

physics to describe forces or velocities.
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a) Physics perspec-

tive 

b) Mathematical perspective c) Computer science           
perspective 

Fig. 1. Vector representation in 3 perspective 

 

From a mathematical perspective (Figure 1, 

b): generalizing, vectors can be added or a 

vector can be multiplied by a number. From 

the geometric perspective, a vector is an arrow 

in an Oxy coordinate system, for example an 

arrow with its end at the very origin of the 

axes O. Physicists consider this vector any-

where in this space, but in linear algebra the 

vector has its end at the origin of the axes. 

Thus, the vector can be translated as a list-of-

numbers realized by considering the coordi-

nates of the vector. To differentiate a point in 

space from a vector in space, round brackets 

are used for points and square brackets for 

vectors (Figure 2, a). When referring to the di-

mensional plane, each pair of numbers means 

one vector and one vector only. A vector has 

one and only one pair of numbers associated 

with it. Extrapolating to 3-dimensional space, 

there are 3 axes, Ox, Oy, Oz (Figure 2, b). A 

vector space can have many bases (even an in-

finity of bases), the dimension of the vector 

space is given by the number of vectors of the 

base (Figure 3, a).

 

  
a) In 2-dimensional space b) In 3-dimensional space 

Fig. 2. Geometric representation 

 

From a computer science perspective (Figure 

1, c): vector is an ordered list of numbers. Ma-

trices describe the transformations of vectors: 

whenever a matrix is encountered, it can be 

interpreted as a certain transformation of the 

space. These transformations can only be de-

scribed with numbers, which are the coordi-

nates where each “basis vector” (an element 

of a set of vectors that forms a basis for a vec-

tor space), arrives after the space transfor-

mation (Figure 3, b). The columns of the 

matrix (which are linearly dependent) repre-

sent the coordinates and the matrix × vector 

multiplication is just a way to compute what 

the new vector has become after the space 

transformation (LTM, 2023). So, matrices can 

be used to change the basis of a vector space. 

If A is a matrix whose columns are the new 

basis vectors, multiplying A by a coordinate 

vector x expresses the same x but in the new 

basis.
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a) In 2-dimensional space b) In 3-dimensional space 

Fig. 3. Linear transformation with spatial transformation 

 

After establishing the three perspectives on 

vectors and examining their transformations 

through matrices, we will present how to 

compute the similarity between two vectors 

in space. Two methods are known, using the 

Euclidean distance and cosine similarity. For 

example, if we consider vectors A = (3, 8, 7, 

5, 2, 9); B = (10, 8, 6, 6, 6, 4, 5), then we cal-

culate the similarity (A, B), i.e. the degree of 

similarity of the two non-zero vectors in the 

vector space, using the relation:

 

 
 

Since cos 0 = 1 and cos 90 = 0, this means 

that: two vectors with a cosine similarity of 1 

have the same orientation; two perpendicular 

vectors have a similarity of 0. 

 

3 Word-Vector mapping 

Words-vector are simple vectors [1]. Vectors 

are translated by a list of real values/numbers 

where each value expresses one dimension of 

the meaning (or sense) of that word, so seman-

tically similar words have similar vectors. 

Words that are used in a similar context will 

be mapped next to each other in the vector 

space. This opened the way to the possibility 

of doing mathematical operations with words. 

The numbers in the word-vector represent the 

weights of that word for the senses/meanings 

of that word, and each meaning of the word 

represents a dimension of the word: the higher 

the weight, the more that word is associated 

with that meaning/sense. This is how the se-

mantics of the word is "embedded across the 

dimensions of the vector". Hence the notion of 

“word embedding”. 

Word embedding aims at creating a vector 

representation with the lowest spatial dimen-

sionality. This is what is called “word vector-

ization” resulting in word vectors. Word 

vectorization is also used for semantic analy-

sis, to extract a meaning, a sense from the text 

which is in fact the expression of natural lan-

guage. A language model capable of predict-

ing the meaning of a text must consider the 

contextual similarity of words [2]. For exam-

ple, words that define fruits (apples, oranges) 

are found in sentences where they are picked, 

grown, eaten, etc. but will not be in proximity 

to the word "airplane". The vectors created by 

word-vector mapping preserve these similari-

ties so we can say that word embedding is the 

construction of a vector representation from a 

corpus of text that preserves the contextual 

similarity of words. The problem of semantics 

or semantic similarity has, as its central idea, 

the hypothesis (called the distributional se-

mantics hypothesis) that linguistic elements 

with the same distribution, in the vector space, 

have the same meaning (similar distribution 

means similar meaning).  

A surprising property of word vectors is that 

word analogies are solved by vector arithme-

tic. The "difference" relation between vectors 

is interesting because it allows us to discover 

relations that show an analogy, a similarity: 

the similar direction indicates such a relation 

of two pairs of vectors. 
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4 Word-vector construction algorithms 

The most popular word-vector mapping con-

struction algorithms are Word2Vec and 

GloVe.  

Word2Vec is the word-vector mapping con-

struction algorithm, a statistical method in 

which a neural network learns to guess a word 

from a text [3]. Input words are passed to the 

network as a binary vector. The binary vectors 

will then pass through a hidden layer of cells, 

then into an output layer called the softmax 

layer (since it uses the Softmax activation 

function) to make a prediction [4]. The weight 

matrix is trained on the hidden layer to find an 

efficient representation of the words. This 

weight matrix is usually called the embedding 

matrix and can be viewed as a look-up table: 

For example, having a vocabulary of 10000 

words, where each word in the vocabulary is 

represented by a 300-dimensional vector, the 

weight matrix is 10000 × 300. The input 

words in the matrix enter as a binary vector in 

the one-hot encoded representation. One-hot 

encoding is a type of binary vector represen-

tation where each word in the vocabulary is 

represented by a vector that has the same 

length as the size of the vocabulary. In this 

vector, all values are 0 except for a single 1 at 

the index corresponding to that word. For ex-

ample, for a vocabulary of 10,000 words, the 

word at index 5 might be represented as “[0, 

0, 0, 0, 1, 0, 0, ..., 0]”. In Figure 4 

[5], as another example, after training a vocab-

ulary of 10,000 words, the word "ant" is rep-

resented as 1 in a specific position. The net-

work is going to tell us the probability for 

every word in our vocabulary of being the 

nearby word that we choose.

 
  Fig. 4. Neural network with a hidden layer having 300 neurons 

 

Each word therefore has a vector associated 

with it. The mapping size (hidden layer size) 

is actually chosen by the model builder (the 

researcher) and represents the number of sim-

ilarities between words, i.e. it is the number of 

features representing the number of similari-

ties between words. It is much smaller than the 

size of the single word vocabulary and, as was 

mentioned, is chosen by the researcher. The 

larger this number, the better the model will 

potentially be. 

Two methodologies are known to implement 

Word2Vec called contextual representations:  

• CBOW (Continuous Bag-of-Words) - the 

model learns the word-vector mapping 

and predicts the current word based on its 

context. It considers a word (label) to-

gether with its surrounding words (which 

actually form the context). These words 

feed the neural network and are used to 

predict the target word. 
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• Skip-Gram - the model learns to predict 

words around the current word. In other 

words, it does exactly the opposite: given 

a target word, it predicts the words around 

that word (it predicts the context). 

Both models work with neural networks that 

learn words based on local context of use. The 

context is defined by a "window" of neighbour 

words. This "window" is a configurable pa-

rameter of the model, and its size has a strong 

effect on the similarity of the resulting vector: 

a large "window" tends to produce topic-

based similarity while small "windows" pro-

duce functional and syntactic similarity.  

Advantages of Word2Vec are: 

• efficient and high-quality mappings;  

• large mappings from billion-word cor-

pora. 

GloVe, the second algorithm presented here, 

has an interesting approach for producing 

word-vectors: it is based on counting words 

vis-à-vis of context [6]. It builds a matrix that 

will reflect/count how many times a word ap-

pears in a context. It no longer uses a "win-

dow" of words to define the local context. In-

stead, it builds an explicit word-context ma-

trix (a matrix that reflects the number of oc-

currences of a word in a context), using statis-

tics over the entire text corpus. The result is a 

learning model that sometimes leads to word 

mappings that are considered better. GloVe 

uses a matrix in which each row represents a 

word and each column represents a context. In 

a given context, words may or may not appear. 

The matrix values represent the frequency of 

occurrence of each word in a given context. 

After applying a matrix size reduction, the re-

sult will be the word-vector mapping: each 

row will actually be the vector of that word. In 

figure 5, an example is shown where the con-

texts are: I like flying; I enjoy flying; I like 

NLP; I like deep learning.

  

 
     Fig. 5. Glove matrix 

 

Stanford University has created a huge set of 

GloVe-derived word-vectors on a text from 

Wikipedia, with a tokenization process built 

on a vocabulary of 400,000 most-used words. 

These vectors can be downloaded online by 

choosing the desired size for them: 25, 50, 

100, 200. 

The Word2Vec and GloVe models are similar 

in the way they work. Both aim to construct a 

vector space in which the position of each 

word is influenced by its neighboring words 

based on their context and semantics. 

Word2Vec uses local individual examples of 

pairs of repeated occurrences of words and 

GloVe uses global statistics of repeated occur-

rences, aggregated over all words in the vo-

cabulary. Table 1 mirrors the characteris-

tics/differences between the two algorithms. 
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Table 1. Word2Vec and GloVe features 

Word2Vec GloVe 

Predictive model. 

Uses a feed-forward neural network.  

It is using a local context: when an unknown 

word shows up, the model gets confused and 

will try to find his embeddings in its vocab-

ulary.  

It is a static and not a dynamically generated 

embedding. 

 

Model based on counting (count-based 

model). 

Does not use a neural network. 

Creates a global co-occurrence matrix, esti-

mating the probability that a given word co-

occurs with other words. 

Requires up-front processing of the entire 

dataset. 

 

To conclude, in our days, when talking about 

contextualized embeddings it is usually un-

derstood that we are talking about embeddings 

that dynamically change depending on the 

given context. This is done by using models 

such as BERT (as we’ll see later in this paper), 

which are trained on large amounts of text 

data and can generate embeddings that capture 

the meaning of a word based on its context. 

 

5 Encoder-decoder architecture for the 

transition to the new paradigm 

The encoder-decoder architecture [7] is a fun-

damental concept in machine learning and 

natural language processing (NLP), and it is 

used in several types of neural network mod-

els, in particular in the context of recurrent 

neural networks (RNNs), convolutional neu-

ral networks (CNNs) and text-generating 

models [8]. The encoder-decoder architecture 

is based on the idea of transforming an input, 

encoding it and providing a corresponding 

output, a process used in a variety of applica-

tions such as machine translation, text sum-

marization, text generation, speech recogni-

tion, etc. 

In this architecture, LSTM cells are used to 

solve the so-called "gradient vanishing" prob-

lem for longer sequences of data, with 

memory being kept for the long sequences. 

The encoder processes an entire sentence 

word by word. The data is passed sequentially 

one after the other creating so-called "depend-

encies" between the previous state and the 

current state. The word embedding process is 

generated in different time steps, one by one. 

The inputs and outputs are done in ordered 

lists of numbers (in sequences). Recurrent net-

works are used in the encoder and also in the 

decoder (Figure 6). The ENCODER network 

takes a sequence as input and creates an en-

coded representation from it. The second net-

work is the DECODER network which takes 

as input the output of the first network i.e. the 

encoded representation. It generates an output 

sequence by decoding it. 

The architecture can be approached in 2 ways:  

• or let the encoder network learn the word-

vector mapping from scratch, feeding it 

with training data, 

• or use pre-trained mappings.

 
Fig. 6. Encoder-Decoder sequence-to-sequence 



28  Informatica Economică, vol. 28, no. 4/2024 

 

 

This architecture has some drawbacks: the se-

quential nature of the RNN-utilization slows 

down GPU computation. Even though LSTM 

cells possess a long memory, still memorizing 

things over a long period of time is challeng-

ing for them. It works with fixed-size vectors 

(word vectors and context vectors) that may 

not contain all relevant information. 

 

6 Transformer and Attention mechanism - 

the new paradigm in human language pro-

cessing 

In this new paradigm, TIME has been 

dropped: temporal recurrence has been re-

placed by Attention, in natural language pro-

cessing with deep learning technology. The 

transformer was introduced in 2017. Like re-

current neural networks (RNNs), transformers 

are designed to handle ordered sequences of 

data, like natural language, for various tasks 

such as machine translation and text summa-

rization (extracting the most relevant infor-

mation from a text) [9].  

However, unlike RNNs, transformers do not 

require the sequence to be processed in order. 

So, if the data in question represents natural 

language text, the transformer does not need 

to process the beginning of a sentence before 

processing the end. Because of this feature, 

the transformer allows much more paralleliza-

tion than RNNs during training.  In other 

words, all the processes that were solved by 

recurrent networks together with LSTM cells 

are now solved simultaneously rather than se-

quentially. Since their introduction, trans-

formers have become the basic building 

blocks of most state-of-the-art architectures in 

NLP, replacing in many cases the models 

based on recurrent neural networks with in-

put/output gates (more specifically LSTM 

cells). Since the architecture of transformers 

allows for more parallelization during training 

computations, it has become possible to use a 

much larger amount of data than was possible 

in the past before this architecture was intro-

duced. 

The architecture is based on neural networks 

(with zero recurrence) and a mechanism 

called Attention. At the heart of the Attention 

mechanism is the idea of allowing the decoder 

to "look back" at the input and extract im-

portant information to be used in the decoder. 

The transformer allows both the Encoder and 

the Decoder to see the entire input sequence, 

all at once. The transformer does not require 

that the sequence be processed in order. If the 

data in question represents natural language 

text, the Transformer does not need to process 

the beginning of a sentence before processing 

the end. The Transformer allows paralleliza-

tion: words are processed all at once, in paral-

lel. "Attention is all you need" [10]: no more 

LSTM cells, no more cell state, no more re-

current networks. TIME is dropped: temporal 

recurrence has been replaced by Attention.  

Transformers preserve word order through the 

use of “positional encoding”. Unlike recurrent 

neural networks (RNNs) or convolutional 

neural networks (CNNs), transformers do not 

inherently understand the order of words in a 

sequence because they process the entire input 

simultaneously rather than sequentially. To 

enable the transformer model to incorporate 

the order of words, positional encodings are 

added to the input embeddings. These encod-

ings are designed to provide information 

about the position of each word within the se-

quence. The positional encoding vector is 

added to the word embedding vector. 

Each word is mapped to a vector but the same 

word in different sentences can have different 

meanings. That's why the positional encoder, 

which is also a vector, has emerged. This new 

vector provides a context based on the posi-

tion of the word in the sentence. Let's illustrate 

how positional encoding helps a transformer 

understand the word order with a concrete ex-

ample.  

Consider the word "bank" in two different 

sentences: 

1. "I went to the bank to deposit money." 

2. "The river bank was overflowing after the 

rain." 

Without positional encoding, the transformer 

would see the same embedding for "bank" in 

both sentences and might struggle to disam-

biguate the meaning based solely on the con-

text provided by the surrounding words. Now 
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we combine the word embeddings with their 

respective positional encodings by simply 

adding them together. For the word "bank" in 

both sentences: 

1. In "I went to the bank to deposit money." 

(position 4): 

• If word embedding for "bank" is: [0.4, 

0.4, 0.4] 

• and if positional encoding at position 4 

is: [−0.7568, −0.6536,0.0335] 

• the combined embedding will be their 

sum: 

[0.4,0.4,0.4]+[−0.7568,−0.6536,0.0335]

=[−0.3568,−0.2536,0.4335] 

 

2. In "The river bank was overflowing after 

the rain." (position 2): 

• Word embedding for "bank": 

[0.4,0.4,0.4] 

• Positional encoding at position 2: 

[0.9093, −0.4161,0.0168] 

• Combined embedding: [0.4,0.4,0.4] + 

[0.9093, −0.4161,0.0168] = 

[1.3093, −0.0161,0.4168] 

Interpretation: The combined embeddings for 

"bank" are now different in the two sentences 

due to the added positional information. This 

allows the transformer to distinguish between 

the two usages of "bank" based on their posi-

tions and surrounding context. Positional en-

coding helps the transformer model incorpo-

rate word order into its understanding of the 

text. By adding these encodings to the word 

embeddings, the model can better capture the 

context and meaning of words in different po-

sitions within a sequence. 

After the sentence goes through the embed-

ding process and the position encoder is ap-

plied, new vectors are obtained having infor-

mation about their position in the sentence, 

which translates to CONTEXT. These vectors 

(containing context info) pass through the En-

coder block (Figure 9). Here, there are several 

layers/processes in which Attention inter-

venes, and then a layer that contains a feed-

forward neural network (the simplest neural 

network). The feed-forward network is an im-

portant component of the Transformer: each 

Attention vector passes through this network 

that brings it to a suitable form for the next 

block of the encoder or decoder. Attention in-

volves answering the questions: "which part 

of the input sentence should you focus on?"; 

"how relevant is a certain word (at a certain 

position in the sentence) to the other words in 

the same sentence?".  

RNNs have realized a generic system where, 

with only a few lines of code, translation from 

one language to another language has been 

achieved, even with the help of context taken 

from English. However, RNNs have the fol-

lowing problem: when generating more than 

1000 - 2000 words, the state of the cells and 

the gating processes of the LSTM cells (gating 

process) make the gradient vanished (van-

ished gradient) because these cells do not have 

such a long memory. In these neural networks 

that translate sentence after sentence (sen-

tences sometimes as long as 40-60 words), to-

ken after token translation is successful, but 

the problem is that they do not "copy" human 

thought: when humans speak, they think about 

the context. For example, when someone is 

talking to a friend, they may be referring and 

thinking about something they discussed 20 

years ago, and the interlocutor knows what it 

is about. This is long-term dependencies [11]. 

The processes inside the Transformer (Fig. 7, 

[12]) for a simple translation of a text from 

English into Romanian are [13]: 

• In the Encoder, the English sentence is 

vector mapped (with Word2Vec also 

solving the semantics of the sentence) and 

then, to these vectors, are added the posi-

tional vector, to get the context of the 

word in that sentence. The attention vec-

tors are constructed and processed here, 

for each word. The attention vector anal-

yses its relationship to itself and to other 

words, resulting in, for example, 8 atten-

tion vectors for a 4-word phrase. These 

vectors are then averaged to obtain the fi-

nal attention vector for each word. 

• The Decoder receives the Romanian 

phrase. Because the phrase was mapped 

into vectors, the decoder receives num-

bers, vectors and matrices. Then adds the 

position vector to get the context of the 

word in the phrase. The decoder has 3 

main components of which two are 
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similar to the encoder. The self-attention 

block generates attention vectors for each 

word in the sentence to represent the rela-

tions between words: how dependent is a 

word with other words in the sentence. 

These attention vectors together with the 

vectors from the encoder are passed to an-

other attention block (called Encoder-De-

coder Attention). This block determines 

how related (dependent) the vectors are to 

each other. At this point we are basically 

mapping the two languages English and 

Romanian. The output of this block is the 

attention vectors for each word in the 2 

languages, but each vector represents (re-

flects) the relations to the other words in 

both languages. These new attention vec-

tors are then passed to a unit through a 

fast-forward neural network to make 

them more fitted for the linear layer.

 

 
Fig. 7. The Transformer 

 

The linear layer is nothing more than another 

fast-forward network that equalizes the size of 

the vectors to that of the number of words in 

the Romanian language. It then passes into the 

Softmax layer which transforms everything 

into a probabilistic distribution easily inter-

pretable by humans. The output is a Romanian 

word with the highest probability. And so, the 

decoder predicts the next word in the sen-

tence. The process is repeated many times (for 

each Romanian word in the sentence) until the 

end is reached. The first attention block in the 

Decoder is also called the "masked attention 

block": while all the words in the English sen-

tence can be used to generate the next Roma-

nian word, only the words preceding the next 

Romanian word in the English sentence are 

used to generate the Romanian words. If all 

the words of the Romanian sentence were 

used, there would be no such thing as network 
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learning: the network would output the next 

word without learning anything. While work-

ing in parallel on matrix operations, the matri-

ces must mask the later words by turning them 

into zeros so that the attention network cannot 

use them. The Transformer model achieves 

referencing based on content rather than 

strictly relying on the position of words. This 

is one of the key innovations and advantages 

of the Transformer architecture, particularly 

through its use of self-attention mechanisms 

[14]. The self-attention mechanism allows 

each word in a sentence to attend to all other 

words in the sentence. This means the model 

can weigh the relevance of each word in rela-

tion to every other word. Attention scores are 

calculated based on the content of the words, 

allowing the model to focus on semantically 

important parts of the input regardless of their 

position. Each word is represented as a query, 

key, and value vector. Unlike RNNs, which 

process words sequentially, transformers pro-

cess the entire input simultaneously. This en-

ables them to understand relationships be-

tween distant words without being biased to-

wards word order. By referencing content ra-

ther than position, the transformer can more 

accurately understand the context and mean-

ing of words in various positions, improving 

tasks such as translation, text summarization, 

and question answering. This content-based 

referencing is a powerful feature that distin-

guishes transformers from traditional sequen-

tial models like RNNs and enables them to 

handle complex linguistic phenomena more 

effectively. It is important to mention another 

crucial technique used in the Transformer 

model (only in the Decoder, just before apply-

ing the Softmax function): masking. This is 

necessary to ensure that certain information is 

either hidden or highlighted during the train-

ing and inference processes. In a future article 

we intend to explain in details how masking is 

applied (to the Attention mechanism) to pre-

vent the Attention mechanism of a trans-

former from “cheating” in the decoder when 

training, like is happening in a translating task 

for instance. For now, is enough to understand 

that the Attention mechanism looks at all the 

past information and it is able to consider a 

very long context. This is one of the main rea-

sons why the Transformer model has become 

so successful, especially in natural language 

processing tasks. It has a powerful way to cap-

ture long-range dependencies and build a 

comprehensive contextual understanding. 

 

7 Conclusions 

This paper traced the evolution of NLP tech-

nology, beginning with the early days of com-

puting when words were associated with and 

transformed into numerical representations in 

vector space. This enabled computer models 

to handle words mathematically, facilitating 

the analysis and processing of their semantic 

meanings. Building on this, techniques like 

Word2Vec, which converts words into vectors 

based on their context within a corpus, and 

GloVe, which derives vector representations 

from word co-occurrence in a corpus, were 

developed. 

 

https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/
https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-state-of-the-art-models/
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Fig. 8 The evolution of technology in NLP world 

 

From this point, it was just a short step to the 

revolution of AI models in natural language 

processing. This step was marked by the 

emergence of Transformers, embodying the 

new philosophy of "Attention Is All You 

Need.". Outstanding examples of cutting-edge 

language processing technology include the 

chatbot robots ChatGPT (developed by 

OpenAI) and BERT (developed by Google, 

[15]. It is important to note that the evolution 

in NLP is rapid and new developments may 

appear at any time. The past and present 
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evolution of architectures is visualized in Fig. 

8. 
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