
Informatica Economică vol. 28, no. 3/2024 73

Account Abstraction: The Key to Blockchain Reporting
Silviu OJOG, Alina-Andrea MIRON

Bucharest University of Economic Studies, Romania

silviu.ojog@csie.ase.ro, alina.miron@mk.ase.ro

One of the most significant barriers to blockchain adoption is the need for a better user

experience. Tasks such as account setup, key management, and transaction handling need to

be streamlined to propel the next wave of technological adoption across various sectors. A

promising solution to these issues lies in account abstraction, which aims to simplify the user

experience by masking the underlying complexities of blockchain technology. The most notable

effort to implement account abstraction is Ethereum's ERC-4337, a proposal that addresses

these pain points by enhancing flexibility and ease of use for developers and end users alike.

This paper explores the account abstraction architecture, its functions and how it can redefine

blockchain utility, from smart contracts to smart reporting.

Keywords: Blockchain, Smart Contract, Security, Ethereum, Exploit, Immutability, Solidity

DOI: 10.24818/issn14531305/28.3.2024.06

Introduction

The emergence of blockchain dates back

to 2008, a pivotal period marked by the global

financial crisis and the inception of Bitcoin

[1]. At its core, blockchain embodies

principles that reduce reliance on centralized

entities. However, Bitcoin pioneered the

blockchain technology primarily for value

exchange. Often referred to as the "digital

gold" or "gold 2.0", Bitcoin's primary function

is a store of value and stems from its strictly

limited supply, distinguishing it from other

blockchain networks. Despite its technical

capability to support smart contracts [2],

Bitcoin's adoption in this area remains limited

due to its higher cost and slower processing

speed. On the other hand, Ethereum [3], the

second-largest blockchain network by market

cap, capitalized on the smart contract concept

and became a store of value.

The "blockchain trilemma", a term coined by

Vitalik Buterin, one of the founders of

Ethereum, refers to the inherent challenge

blockchain networks face in balancing three

fundamental attributes: security,

decentralization, and scalability. These

attributes represent core principles often in

tension with each other, making it challenging

to achieve optimal performance in all three

areas simultaneously.

Scalability is the ability of a blockchain

network to handle an increasing number of

transactions or users without compromising

performance. This includes transaction

throughput, confirmation times, and overall

network efficiency. Scalability comes with

costs, some transactional, such as gas fees,

and others less visible technical knowledge.

Many times, that cost is difficult for a user to

bear. That is why the adoption of blockchain

by users beyond early adopters is challenging.

2 Security and UX considerations

Digital signatures provide protections within

the blockchain context, notably integrity

assurances. They guarantee that a transaction

remains unaltered from its transfer from the

initiator to its long-term storage on each

blockchain node. The system also benefits

from authentication and non-repudiation,

thereby establishing the origin of a transaction

as that of the account owner or an authorized

user [4].

The effectiveness of our digital signature

algorithm is solely dependent on the

confidentiality of this private key. Possessing

this key allows the generation of valid digital

signatures and the creation of legitimate

blockchain transactions.

Therefore, the security of a blockchain

account is significantly dependent on

safeguarding the private key associated with

that account. Whoever possesses the private

key can access any functionality within the

1

mailto:@csie.ase.ro
mailto:@csie.ase.ro

74 Informatica Economică vol. 28, no. 3/2024

blockchain, most significantly transferring

assets. A private key is considered

compromised if revealed even for a split

second. Therefore, private key management in

blockchain represents a paradigm shift from

the real world, where possessing a key does

not serve as definitive proof of ownership.

Just like possessing the keys to a house grants

access, it does not automatically prove

ownership. In the real world, other

participants may possess keys that allow

access without asserting ownership over the

underlying assets or resources.

Fig. 1. Smart Contract Communication

The challenge lies in maintaining a delicate

balance for the average user. Strong security

measures are essential to prevent

unauthorized access to sensitive information

and funds. Such measures may include robust

authentication methods such as passwords,

biometrics, and two-factor authentication

(2FA). While it is critical to protect the private

key, it is equally essential to ensure its

usability. Ideally, the most secure method of

safeguarding a private key might involve

writing it on paper. However, such measures

render the private key inaccessible for

transactional use. Therefore, the aim is to

enable intermediate users to access their

private keys while preventing unauthorized

access by attackers. On the other hand, users

expect fast and seamless transactions without

unnecessary delays or complications.

Optimizing transaction processing times and

providing clear feedback on transaction status

can enhance user satisfaction.

3 The current Ethereum Architecture

As a smart contract blockchain platform,

Ethereum supports two types of accounts:

Externally Owned Accounts (EAO) and

Contract Accounts (CA) [5]. There are crucial

differences regarding the ability to interact

with these two types of accounts and what

information they store.

A Contract Account is, in fact, a smart

contract that contains the instructions in the

form of an opcode that the Ethereum Virtual

Machine EVM runs, while the EAO does not.

Once a CA is deployed on a blockchain,

anyone can view and interact with its code.

Certain features may be restricted for

interaction, but they are visible.

A smart contract receives instructions through

transactions. They can provide the input to

smart contracts, which are run on the EVM

and can be initiated only by an EAO, but can

be forwarded by a CA [6].

A transaction occurs when a new contract is

deployed on the blockchain or when tokens

are transferred between two externally owned

accounts or from one externally owned

account to a contract account. An external

actor controls an EAO through private keys

while a CA has no private key. Smart

contracts, and therefore the CAs can have an

owner entity with elevated privileges to access

and edit data from a contract.

Nevertheless, transactions do not end in a

database immediately. They are first

submitted to blockchain participants called

nodes, and new transactions are constantly

emitted between nodes. The sum of all

transactions not inserted in the blockchain yet

form the memory pool, or mempool in short.

Every transaction is accompanied by a gas

limit, which estimates the amount (gas) the

transaction will spend. The gas limit imposed

by the transaction creator, and it depends on

the complexity of the operation.

Informatica Economică vol. 28, no. 3/2024 75

4 Account Abstraction implementation

The Ethereum ecosystem has two

mechanisms for proposing and standardizing

changes and enhancements of the Ethereum

protocols: EIPs (Ethereum Improvement

Proposals) and ERCs (Ethereum Request for

Comments). EIPs are detailed design

documents outlining new features or

modifications to Ethereum's core protocol,

network, interfaces, or application standards.

Each EIP undergoes rigorous peer review

within the Ethereum community before

potential implementation [7]. On the other

hand, ERCs focus specifically on proposing

standards for Ethereum functionalities such as

token protocols (e.g., ERC-20 for fungible

tokens or ERC-721 for non-fungible tokens).

ERCs provide formal specifications and

guidelines, fostering interoperability and

compatibility among Ethereum-based

applications. Both EIPs and ERCs have

significant functions in shaping Ethereum's

technical evolution and standardization,

contributing to its continuous development

and adoption within the blockchain

ecosystem.

The main difference between ERC and EIP is

the network's implementation method. For the

first, it is not necessary to change the protocol,

i.e., create a fork. A fork is a concept from the

DevOps world, from the git tool. It means

creating two different code bases. There have

been several such splits in history, the most

recent being the transition to the new type of

consensus, the proof of stake consensus, in

which the Ethereum PoW (Proof of Work)

blockchain was created, which has the same

blockchain as Ethereum.

In the blockchain context, "account

abstraction" refers to simplifying or

concealing technical processes from the end

user. ERC 4337 proposes a new architecture

for abstracting out the mechanism of creating

an Externally Owned Account (EOA), signing

and sending transactions to the blockchain.

This approach aims to shield users from the

intricacies of underlying technologies,

enabling them to benefit without needing a

deep understanding of the operational details.

In the future, ERC 4337 may turn into EIP.

Account abstraction represents a

transformative concept within blockchain

technology. It reshapes the traditional notion

of accounts by treating each one as a smart

contract rather than a conventional Externally

Owned Account (EOA). This shift introduces

possibilities where smart contracts can

embody custom logic tailored to specific

needs and use cases. ERC 4337 includes

several components, detailed in the following

sections [8].

4.1 User Operations

On User Operation represents the action the

user wants his wallet to perform ERC 4337

introduces the UserOperations mempool, an

alternative memory pool of transaction,

alongside traditional transaction handling.

This new mempool specifically caters to

UserOperations, which are pseudo transaction

objects generated when users engage with

decentralized applications (dApps). Instead of

routing through the conventional transaction

mempool, UserOperations are directed to the

UserOperations mempool. UserOperations

allow grouping multiple actions into a single

operation. By signing this combined

operation, users delegate its execution to the

Ethereum network. UserOperations do have a

structure similar to Ethereum transactions

while integrating specific logic defined by

ERC-4337. Similar to standard transactions,

UserOperations contain familiar fields like

sender, recipient, calldata, maxFeePerGas,

maxPriorityFee, signature, and nonce.

However, they also feature additional fields,

elaborated upon in subsequent sections, as

multiple validations are needed before

transaction execution [8].

4.2 Bundlers

Following UserOperation preparation,

Bundlers are entities that integrate these

operations into the Ethereum network. They

gather multiple UserOperations as

intermediaries before submitting them to the

network. Bundlers can function as validators

or MEV (Miner Extractable Value) searchers,

ensuring efficient transation processing within

the network. Bundlers actively monitor the

UserOperations mempool for incoming

76 Informatica Economică vol. 28, no. 3/2024

UserOperations, consolidating them into

Bundle Transactions by aggregating multiple

UserOperations. Subsequently, every Bundle

transaction invokes the handleOps function

within the EntryPoint contract.

Fig. 2. Entry Point Contract

4.3 Entry Point

Operating as the gatekeeper for the Ethereum

network, the EntryPoint smart contract

unpacks and executes UserOperations

submitted by Bundlers. The EntryPoint

contract acts as a singleton on the whole

Ethereum Network. If an operation encounters

an issue, the EntryPoint can reverse its

actions, safeguarding transaction integrity and

reliability. The EntryPoint contract operates

as a singleton, meaning it exists as a singular

instance. Its primary role revolves around

validating and executing Bundle

Transactions. Prior to integrating a

UserOperation into a Bundle Transaction,

Bundlers execute a simulateValidation

function call within the EntryPoint contract.

The UserOperation is omitted from the

Bundle Transaction if the validation proves

unsuccessful [8].

4.4 Factory Contract

A Factory contract calls to create a wallet

contract for the user. It has a double role.

Firstly: it solves the cold start problem when a

wallet contract is not created and must be

deployed. Secondly, a new smart contract

wallet could be deployed in case of a zero-day

vulnerability within the smart contract wallet.

The Ethereum Storage Contract Inheritance

must be followed.

Factory Contracts must be deployed prior to

the Smart Contract and have sufficient funds

to deploy a new contract.

Fig. 3. Factory Contract

Informatica Economică vol. 28, no. 3/2024 77

4.5 Smart Contract Account (Wallet

Account)

Conceptualized as an automated assistant

within the Ethereum network, contract

accounts differ from standard accounts in that

they autonomously execute actions based on

received instructions, such as those from a

user operation. They facilitate interactions

with other contracts, asset management, and

decision-making based on programmed logic,

streamlining complex Ethereum transactions

through automation.

Fig. 4. Smart Contract Wallet

The responsibilities of the account contract

include: validating that the execution call

originates from a legitimate EntryPoint

contract, verifying the validity of the signature

using a preferred validation mechanism and

addressing missingAccountFunds, which

represents the additional funds needed to

execute a UserOperation if the account's

deposit in the EntryPoint contract is

insufficient.

The validateUserOp function primarily

focuses on signature validation and ensuring

adequate funds to cover gas costs without

executing the actual call data operations. To

maintain validation integrity between the

validation and execution phases, certain

restrictions are placed on the function:

Prohibition of specific opcodes like

BLOCKHASH and TIMESTAMP to prevent

value changes between phases. Restriction of

storage access to only the account's associated

storage and relevant contract storage, ensuring

data consistency.

Additionally, the EntryPoint contract requests

the maximum gas amount, retaining the

surplus for future operations. The account is

only required to cover missingAccountFunds,

which is not provided by the EntryPoint

contract for this specific scenario.

4.6 Paymaster

The paymaster is an optional component

capable of covering transaction fees on behalf

of transactions. It commits to reimbursing the

Bundler for gas costs under specified

conditions outlined in the associated smart

contract. It must also maintain a locked stake

to prevent malicious actors' potential abuse of

the system. This staking requirement is a

deterrent against paymasters who might

initially agree to cover transaction costs but

later reject them, potentially leading to a

denial-of-service (DoS) attack.

Fig. 5. Paymaster

78 Informatica Economică vol. 28, no. 3/2024

A reputation system similar to traditional web

environments is implemented to ensure

accountability. Paymasters with significant

transaction failures face temporary bans,

deterring malicious behavior. Each Bundler

maintains individual reputation tracking

systems, allowing for customized approaches

to managing paymaster reputations.

It is important to note that even if a paymaster

behaves maliciously, their stake is not

forfeited, distinguishing this system from

others that penalize malicious actors by

seizing their stakes. However, there are

exceptions to the staking rule: Paymasters

may not need to stake if they pass validation

but fail execution due to storage changes

occurring between the two steps, typically

caused by multiple operations altering the

same storage. Paymasters who do not utilize

storage or solely rely on the account's storage

and not their own may also be exempt from

staking requirements. Successful validation

implies a low likelihood of execution failure,

minimizing the risk of malicious behavior

from the Paymaster.

5 Implementing Account Abstraction

The core idea of account abstraction extends

beyond simplicity, offering nuanced

capabilities that will unfold progressively. A

vital feature of this paradigm is the separation

of the signer from the account itself, liberating

transactions from the constraints of a single

entity responsible for signing messages.

Decoupling the signer from the account opens

doors to various innovations, including

enabling multiple signers for a single account,

searching for alternative signature schemes

beyond the Elliptic Curve Digital Signature

Algorithm (ECDSA), implementing distinct

validation methods for different transaction

types or potentially integrating biometric

authorization methods used outside of

blockchains like FaceID or TouchID. Figure 7

bellow depicts such an authorization flow.

.

Fig. 6. Custom signature for Smart Contracts

Informatica Economică vol. 28, no. 3/2024 79

These capabilities empower smart contract

accounts to define their transaction validation

criteria, fee payment mechanisms, and

transaction initiation processes based on

predefined logic. The flexibility offered by

account abstraction invites creativity and

innovation in blockchain development.

Several notable use cases facilitated by

Account Abstraction include innovative

approaches to gas fee management,

transaction batching, access control, gas

sponsorships, and custom signature schemes.

ERC 4337 proposes a dynamic architecture in

which specific actors such as Paymasters are

not compulsory to exist. Factory Contracts,

for example, are very rare in usage flow, often

only once when deploying the contract. Figure

8 shows, using the flow chart, the different

flows that a user transaction can take until it is

rejected or executed successfully and has

repercussions in the blockchain.

Fig. 7. Assessing Smart Contracts Components

If we think about what blockchain means,

at the root, we see that we are dealing with a

distributed ledger technology. Historically,

ledgers have been used to account for and

report various assets. Blockchain followed a

similar path by accounting financial

transactions with the spring of Bitcoin and

gradually incorporating more sophisticated

assets. Some of those assets may create

entirely new markets and economies, such as

the Decentralized Finance (DEFI) market

[11].

The first step towards trust in technology

has been achieved. Abstracting the account,

comes to ease the process. In the world,

reporting is an arduous process. A report is

80 Informatica Economică vol. 28, no. 3/2024

nothing but a transaction according to the

rules. For example, in a reporting process we

have the one who reports and the one to whom

it is reported. To make reporting easier, the

friction must be lower. That is, the person to

whom it is reported must be the one who sets

the mechanism in motion, that is, to control

the creation of the Smart Contract Account by

managing the Factory Account. This

empowers the reporting process, giving

control to the reporting authority. As stated

earlier, interacting with a contract requires

transaction costs [12]. The respective costs

can be borne by the authority requesting the

respective report.

7 Conclusions and Future Work

Blockchain is an ever-evolving technology,

with challenges and risks constantly rising. It

has the potential to disrupt many online

industries and business models. Smart

contract security is a particularly important

piece of the blockchain puzzle as it handles

the creation, storage and distribution of

valuable assets. Smart contracts are

immutable, public, and fully open for

interaction; thus, new approaches are needed.

Researchers and developers must consider it

and the adversary environment and prepare

accordingly by adopting the best standards

and performing smart contract security audits

[13].

In order to accelerate technology adoption,

the blockchain research community must

continue to provide explicit models for

creating, securing, error handling, and

interacting with smart contracts. Mass

adoption is likely reached when many low-

level interactions with smart contracts and

blockchains are abstracted. Several example

abstraction implementations that are

compliant with the ERC-4337 standard are

needed.

New users will likely emerge as the

industry progresses in creating new examples.

Attracting new users will lead to the discovery

of new use cases, which will mature the

blockchain industry and create much-

anticipated market disruptions.

References

[1] Bitcoin: A Peer-to-Peer Electronic Cash

System (2008) - Satoshi Nakamoto.

Available: https://bitcoin.org/bitcoin.pdf

[2] N. Szabo. Smart Contracts: Building

Blocks for Digital Markets. Available:

http://www.truevaluemetrics.org/DBpdfs/

BlockChain/Nick-Szabo-Smart-

Contracts-Building-Blocks-for-Digital-

Markets-1996-14591.pdf (1996).

[3] Ethereum Whitepaper: A Next-Generation

Smart Contract and Decentralized

Application Platform. Available:

https://ethereum.org/en/whitepaper/

(2014).

[4] V. Buterin. Ethereum: A Secure

Decentralised Generalised Transaction

Ledger. Shanghai Version 57d59cd.

Available:

https://ethereum.github.io/yellowpaper/pa

per.pdf (2024/07/23).

[5] X. Wu, Z. Zou, D. Song, Learn Ethereum.

2nd edn. Publisher, Location.

[6] S. Ojog, An Overview of Security Issues

in Smart Contracts on the Blockchain. In:

Proceedings of 21st International

Conference on Informatics in Economy

(IE 2022), vol. SIST, no. 321, pp. 51–63.

Springer, Heidelberg (2023).

[7] Ethereum Improvement Proposals.

Available:

https://eips.ethereum.org/EIPS/eip-4337,

last accessed 2023/05/14.

[8] Ethereum Foundation. Available:

https://www.erc4337.io/, last accessed

2023/05/14.

[9] Open Zeppelin: ERC-4337 Account

Abstraction - Incremental Audit.

Available:

https://blog.openzeppelin.com/erc-4337-

account-abstraction-incremental-audit.

[10] D.J. Bernstein, T. Lange, P. Schwabe.

High-speed high-security signatures.

Available:

https://ed25519.cr.yp.to/ed25519-

20110926.pdf, last accessed 2023/05/14.

[11] S. Ojog. The Emerging World of

Decentralized Finance. Informatica

Economică vol. 25, no. 4, pp. 2021 (2022).

http://www.truevaluemetrics.org/DBpdfs/BlockChain/Nick-Szabo-Smart-Contracts-Building-Blocks-for-Digital-Markets-1996-14591.pdf
http://www.truevaluemetrics.org/DBpdfs/BlockChain/Nick-Szabo-Smart-Contracts-Building-Blocks-for-Digital-Markets-1996-14591.pdf
http://www.truevaluemetrics.org/DBpdfs/BlockChain/Nick-Szabo-Smart-Contracts-Building-Blocks-for-Digital-Markets-1996-14591.pdf
http://www.truevaluemetrics.org/DBpdfs/BlockChain/Nick-Szabo-Smart-Contracts-Building-Blocks-for-Digital-Markets-1996-14591.pdf
https://ethereum.org/en/whitepaper/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eips.ethereum.org/EIPS/eip-4337
https://www.erc4337.io/
https://blog.openzeppelin.com/erc-4337-account-abstraction-incremental-audit
https://blog.openzeppelin.com/erc-4337-account-abstraction-incremental-audit
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf

Informatica Economică vol. 28, no. 3/2024 81

[12] M. Araoz, D. Brener, F. Giordano, S.

Palladino, T. Paivinen, A. Gozzi, F. Zeoli.

Zeppelin OS: An Open-Source,

Decentralized Platform of Tools and

Services on Top of the EVM to Develop

and Manage Smart Contract Applications

Securely. Available:

https://openzeppelin.com/assets/zeppelin

_os_whitepaper.pdf (2017).

[13] Solidity Security Patterns. Available:

https://github.com/fravoll/solidity-

patterns, last accessed 2023/05/14.

Silviu OJOG has graduated the "Gh. Asachi" Technical University, in 2013,

in Iasi Romania BSc in Applied Electronics. He graduated University of

Bucharest, Romania MSc in Software Engineering, 2016. He is currently

enrolled as a PhD Student Economic Informatics, Bucharest University of

Economic Studies. He holds a certification in new venture leadership from the

Massachusetts Institute of Technology, USA, following a study program in

Brisbane, Australia.

Alina-Andrea MIRON graduated in Public Administration from the National

School of Political and Administrative Studies in 2012 in Bucharest, Romania.

She holds two master's degrees, one in Public Sector Management at the

National School of Political and Administrative Studies in 2014 and the other

in Online Marketing at the Academy of Economic Studies in Bucharest,

Romania, in 2021. She is currently enrolled as a PhD student in Marketing,

and her thesis is related to social responsibility communication. She is also an

associate professor teaching PR.

https://openzeppelin.com/assets/zeppelin_os_whitepaper.pdf
https://openzeppelin.com/assets/zeppelin_os_whitepaper.pdf
https://github.com/fravoll/solidity-patterns
https://github.com/fravoll/solidity-patterns

