
32  Informatica Economică vol. 28, no. 3/2024  

Theory and Application of the Bivariate Credibility Model 
 

Ahlem DJEBAR  

Badji Mokhtar Annaba University, Algeria 

ahlememath@yahoo.fr 

 

In recent times, the insurance activity had shown an implausible increase which had an 

expressively valuable effect on the economic growth of several countries globally. Services that 

influence growth in the country include the deployment of a colossal sum of funds by means of 

premiums for short- and long-term investment for development and underwriting of risk in 

economic entities. We propose in this paper new credibility premiums, which is based on a 

relationship between the number and the number of claims of a contract for that year, under 

the irreducible random variables, which helps us ensure the covariance matrix inversion. And 

then we calculate bivariate Bühlmann and Bühlmann Straub estimators with application. Thus, 

we arrive at the new estimators of the individual premium by using additional sources of data. 

We conclude with structure parameters estimators and application.   
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Introduction 

Credibility theory is an actuarial pricing 

method. Due to this theory the insurer may 

calculate the premium of a portfolio of 

contracts. Credibility theory is to combine 

the available data on the portfolio and each 

individual (the contract) see [11], [12]. 

Several models of credibility have been 

established [1], [2], [3]. For that we propose 

in this paper to present new premiums 

credibility of the insurance contract. We 

extend the univariate credibility model to the 

bivariate credibility theory by using 

additional sources of data. In many cases we 

find that insurance there is a relationship 

between the number and the number of 

claims of a contract for a single period see 

[5]. We write new estimators of individual 

premium. 

The indispensable problem of linear 

credibility is determined estimator of the 

individual premium for a contract or a 

portfolio of insurance contracts [7],[8]. As 

the credibility estimator is linear in the 

observations of the portfolio. To determine a 

precise form of the estimator of credibility, 

we must solve the problem of minimizing the 

least squares sense: 

Ψ = 𝑚𝑖𝑛{ζ1,𝜁2,𝜉1,𝜉2} 𝐸 [(
𝜇1 (Θ) − �̂�1(𝜁1, 𝜁2)

𝜇2(Θ) − �̂�2(𝜉1, 𝜉2)
 )

2

]               (1) 

 

With 𝜇1(Θ) and 𝜇2(Θ) are respectively, the 

conditional expectation of the number of 

claims, and the conditional expectation of 

number of claims, and Θ  is a risk profil. Here, 

�̂�1(𝜁1, 𝜁2) and �̂�2(𝜉1, 𝜉2) are linear forms 

which will be specified in the various models, 

and𝜁1, 𝜁2, 𝜉1, 𝜉2 are credibility factors. The 

goal in greatest accuracy credibility consists 

in finding the closest (in the mean square 

sense) estimator of the aggregate risk 

premium. 

This paper is structured in five parts.  

 

2 Preliminaries 

Let (Ω, ℱ, ℙ) be a probability space and 𝐿2 =
 𝐿2(Ω, ℱ, ℙ) the Hilbert space of square-

integrable random variables. 

The task of credibility theory is to provide 

decisions or estimators for future uncertain 

events. Deterministic or certain events do not 

need to be estimated; they simply can be 

calculated. It is therefore reasonable to 

eliminate deterministic dependencies within 

the random structures regarded. On the other 

hand, credibility theory is restricted to find 

linear estimators using the Hilbert space 

1 
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structure of L2, in particular its orthogonality. 

Thus, it is sufficient to eliminate linear 

deterministic dependencies in the setup of 

credibility. This leads to the following 

definition:  

 

Definition 2.1 

Let (Ω, ℱ, ℙ) be a probability space and L2   =
    L 2 (Ω, ℱ, ℙ)  the Hilbert space of square 

integrable random variables. A sequence of 

random variables     X =  (X1 , . . . , Xn  ) is 

called (linearly) reducible       with respect to 

the probability measure ℚ if there exist real 

coefficients α0 and α =  (α1  , . . . , αn )  ≠  0 

such that : 

 

ℚ(∑ 𝛼𝑖𝑋𝑖 = 𝛼0
𝑛
𝑖=1 ) = 1.                            (2) 

 

In the context of ℚ -square-integrable 

random variables the irreducibility of a 

sequence of random variables can be 

characterized as follows: 

 

Proposition 2.1  

A sequence 𝑋 =  (𝑋1 , . . . , 𝑋𝑛  )of ℚ -square-

integrable random variables are irreducible if 

and only if their ℚ -covariance matrix 

𝐶𝑜𝑣ℚ(𝑋) ∶= ((𝑋𝑖  , 𝑋𝑗   ))1≤𝑖,𝑗≤𝑛             (3) 

is positive definite. 
 

Proof.  

Let 𝑋 =  (𝑋1 , . . . , 𝑋𝑛  ) ∈  (𝐿
2  (ℚ))𝑛 .  

The matrix 𝐶𝑜𝑣ℚ(𝑋) not being positive 

definite is equivalent to having 0 as spectral 

value. The later is equivalent to: 

𝛼𝑡𝑟 𝐶𝑜𝑣ℚ(𝑋)𝛼 = 𝑉𝑎𝑟ℚ ( ∑ 𝛼𝑖𝑋𝑖𝑖   )  =  0 for 

some 𝛼 =  (𝛼1  , . . . , 𝛼𝑛 )  ≠  0. 

But the vanishing of the ℚ -variance is 

again equivalent to 𝐸ℚ ∑ 𝛼𝑖𝑋𝑖𝑖  = 𝛼0 , i.e. 

the reducibility of  𝑋.         

 

3 The univariate credibility model 

In this section, we present the standard 

Bühlmann model (1967) see [4],[8] for 

one no life insurance contract. We denote 

Xj (j =1,...,n) are a random variables 

present the observations of a contract, and  

Θ a risque profil. 

 

Assumptions (univariate credibility model) 

 

i)The random variables Xj (j =1,...,n) are, 

conditional on  Θ = 𝜃,  independent with 

the same distribution function  𝐹𝜃 with the 

conditional moments

 

µ(𝜃) =  𝐸 [𝑋𝑗 |Θ = 𝜃],                          (4)   

 
𝜎2(𝜃) = 𝑉𝑎𝑟[𝑋𝑗 |Θ = 𝜃]                       (5) . 

 
ii) Θ is a random variable with distribution 

U(𝜃). In this model the objective is to find an 

estimator for the individual premium µ(𝜃), 
which are linear in the observations. So, the 

best linear estimator has to be of the form:  

                      µ(𝜃)̂ =  �̂� + �̂��̅�    (6)                                                     

Where  �̅� =
1

𝑛
∑ 𝑋𝑗
𝑛
𝑗=1  and �̂�, �̂� are the solution 

of the minimizing problem: 

  

𝐸 [(µ(𝜃) − �̂� − �̂��̅�)
2
] = 𝑚𝑖𝑛𝑎,𝑏𝜖ℝ 𝐸 [(µ(𝜃) − �̂� − �̂��̅�)

2
] 

 

After the partial derivatives with respect to a, 

resp. b, and the dependency structure 

imposed by Model Assumptions, we get the 

following theorem: 

Theorem3.1 

The univariate credibility estimator under 

model   Assumptions is given by  

 

µ(Θ)̂ = (1 − 𝛼)𝜇0 + 𝛼�̅�             (7) 
 

where 

               𝜇0 = 𝐸[µ(Θ), 

𝛼 =
𝑛

𝑛 + 𝜎
2

𝜐2⁄
. 

𝜐2 = 𝑉𝑎𝑟[µ(Θ)]     (8) 
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and  

𝜎2 = 𝐸[𝜎2(Θ)].  (9) 

See([4],[7]) 

In the next section, we present a 

generalization of univariate credibility 

model, we bascule to the bivariate Bühlmann 

model.  

 

4 The bivariate Bühlmann model 

We consider an insurance portfolio consisting 

of n ≥ 2 contracts. Each contract i has been 

activated in the last t periods at least for one 

period. 

By T(i) ⊆{1,...,t} we denote the set of the 

activated past periods of contract i, assuming 

that its cardinality ti := |T(i)|≥ 2.We set t0 := 
∑ ti1≤i≤n . In order to be able to include the 

future period t +1, we set T+(i):= T(i) ∪{t +1}. 

Now we have for each contract i the set of 

pairs of random variables:

  

(𝑋𝑖
1 , 𝑋𝑖

2 ) = (𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 )
𝑠∈𝑇+(i)

, 

 

i =1,...,n. For example, 𝑋𝑖,𝑠
1 𝑎𝑛𝑑 𝑋𝑖,𝑠

2   can be 

interpreted as respectively the amount and the 

number of claims of the contract i in the period 

s. 

The random variables of the whole model are 

denoted by : 

(𝑋1 , 𝑋2 ) = (𝑋𝑖
1 , 𝑋𝑖

2 )
𝑖=1,…,𝑛

, (10) 

We make the following model assumptions: 

(B1) The random structure variables (Θi)i=1,...,n 

have the identical distribution ℙ Θ. 

(B2) The families of random variables 

(Θi, 𝑋𝑖
1 , 𝑋𝑖

2)i=1,…,n, are mutually non-

correlated with  

𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2∈ L2 for all s ∈ T+(i), i =1,...,n. The 

complete set of random variables  

{𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 i,s | s ∈ T+(i),i =1,...,n} is assumed 

to be ℙ -irreducible. 

(B3) For fxed i and conditioned by Θi, the 

pairs of random variables {𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 i,s | s ∈ 

T+(i),i =1,...,n} are mutually non-correlated 

with the first and second conditional moments 

depending only on Θi. 

τ =1, 2. Moreover, on a non-negligible set 

the pair (𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2)is assumed to be ℙ(·|Θi)-

irreducible: 
ℙ Θ {𝜔|𝑋𝑖,𝑠

1 , 𝑋𝑖,𝑠
2 is ℙ(. |Θi(ω)) − irreducible} > 0. 

For conditional and non-conditional 

moments,we save same notations as in [5]. 

A first result from the assumptions made is 

the following: 
Lemma 4.1.  

Under the model assumptions (B1)-(B3) we 

have:

 

𝐷𝑖,1 ∶= (𝑡𝑖𝐵
(1) + 𝐴(1))(𝑡𝑖𝐵

(2) + 𝐴(2))  −  (𝑡𝑖𝐿 +  𝐾)
2 >  0             (11) 

and 
𝐷2 ∶= 𝐴

(1)𝐴(2) − 𝐾2 >  0.    (12)   

 

Proof 

To show (11), we know by assumption (B1) 

that the sequence of random variables 

(𝑋𝑖
1 , 𝑋𝑖

2)is assumed to be ℙ(·|Θi) irreducible, 

and so is the pair vector 

(∑ 𝑋𝑖,𝑠
1 ,𝑠∈𝑇(𝑖) ∑ 𝑋𝑖,𝑠

2
𝑠∈𝑇(𝑖) ). Lemma2.2 tells 

us that their covariance matrix is positive 

definite: 

 

𝐶𝑜𝑣 ( ∑ 𝑋𝑖,𝑠
1 ,

𝑠∈𝑇(𝑖)

∑ 𝑋𝑖,𝑠
2

𝑠∈𝑇(𝑖)
) = (

𝑡𝑖𝐵
(1) + 𝐴(1) 𝑡𝑖𝐿 +  𝐾

𝑡𝑖𝐿 +  𝐾 𝑡𝑖𝐵
(2) + 𝐴(2)

) 

 

This implies that the determinant 

 𝐷𝑖,1 ∶= (𝑡𝑖𝐵
(1) + 𝐴(1))(𝑡𝑖𝐵

(2) + 𝐴(2))  −

 (𝑡𝑖𝐿 +  𝐾)
2 

Of the last matrix is strictly positive which 

the statement is in (11).  

For the inequality (12), the assumption (B3) 

implies with Lemma2.2 that on a set of 

positive ℙ Θ-measure the covariance matrix 

with respect to the conditional probability 

 ℙ (·|Θi) of the pair  (𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2)  is positive 
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definite:

 

𝐶𝑜𝑣ℙ(·|Θi)(𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2) = (
𝛼(1)(𝛩) 𝜅(𝛩)

𝜅(𝛩) 𝛼(2)(𝛩)
). 

This implies that for any pair(α1,α2) ≠0 the 

conditional variance  𝑉𝑎𝑟ℙ(·|𝛩𝑖)  ( α1𝑋𝑖,𝑠
1+ 

α2𝑋𝑖,𝑠
2)≥ 0 is strictly positive on a set of 

positive ℙ Θ-measure. Therefore also

 

EΘ (VarP(·|Θi)
( α1𝑋𝑖,𝑠

1 + α2𝑋𝑖,𝑠
2)) = (α1 α2) (

A1 K
K A2

) (
α1
α2
) > 0. 

 

This shows that the matrix (A
1 K
K A2

) is 

positive definite and consequently its 

determinant 𝐷2 ∶= 𝐴
(1)𝐴(2) − 𝐾2 is strictly 

positive.  

 

We want to find a linear credibility estimator 

of the bivariate system (𝑋𝑖,𝑡+1
1 , 𝑋𝑖,𝑡+1

2). 
Consequently, it is assumed that such 

estimators of  𝑋𝑖,𝑡+1
(𝜏), τ =1, 2, have the form

 µ̂(𝜏)
𝑖
 (X1 , X2 ) =  ζi,0

(𝜏)  + ∑ ∑ (ζi,j,s 
(𝜏,𝜏)    𝑋𝑗,𝑠

(𝜏)  +s∈T(j)1<𝑗<𝑛

 ζi,j,s 
(𝜏,3−𝜏)       𝑋𝑗,𝑠

(3−𝜏))             (16)  

With real coefficients  ζi
(𝜏) =

(ζ
i,0

(𝜏), ζ
i,j,s 

(𝜏,𝜏), ζ
i,j,s 

(𝜏,3−𝜏)). 

 

Theorem4.1.    

Under the assumptions (B1)–(B3) the 

optimal solution to the linear credibility 

problem is:

   µ̂(𝜏)∗
𝑖
 (X1i , X

2
i ) = (1 − ζi

(𝜏,𝜏))𝑀(𝜏)  +
1

ti
 ∑ (ζi 

(𝜏,𝜏)    𝑋𝑖,𝑠
(𝜏)  +s∈T(i)

 ζi
(𝜏,3−𝜏)(       𝑋𝑖,𝑠

(3−𝜏) −𝑀(3−𝜏)))    (13) 

τ =1, 2, where the credibility coefficients  ζ
i 

(𝜏,𝜏), ζ
i

(𝜏,3−𝜏)
  are given by the following 

formulas:  

ζ
i 

(𝜏,𝜏) =
ti

Di,1
(B(τ)(tiB

(3−τ) + A(3−τ)) − L(tiL + K))                        (14) 

ζ
i 

(𝜏,3−𝜏) =
ti

Di,1
(A(τ)L − B(τ)K).                          (15) 

Remark 4.1 

In contrast to the standard credibility 

formula, here the credibility factors 

ζ
i 

(𝜏,𝜏), ζ
i

(𝜏,3−𝜏)
     are not necessarily in [0, 1]. 

 

Proof. :  

Obviously, the credibility problem:

 

𝑚𝑖𝑛
ζi 
(1),ζi 

(2)𝐸 [ ∑ (𝑋𝑖,𝑡+1
(τ) −  µ̂(𝜏)

𝑖
 (X1, X2 ))

2

τ =1,2

]

= ∑ 𝑚𝑖𝑛
ζi 
(𝜏)   𝐸[(𝑋𝑖,𝑡+1

(τ) −  µ̂(𝜏)
𝑖
 (X1, X2 ))

2

]

τ =1,2

. (16) 

Can be separated. As necessary conditions of optimality, we have for i,j ≤ n and s ∈ T(j):. 

0 =
𝜕

𝜕ζi,0
(𝜏)
= 𝐸 [𝑋𝑖,𝑡+1

(τ) − ζi,0
(𝜏)

−∑ ∑ (ζi,j,s 
(𝜏,𝜏)    𝑋𝑗,𝑠

(𝜏)  +  ζi,j,s 
(𝜏,3−𝜏)       𝑋𝑗,𝑠

(3−𝜏))

s∈T(j)
1<𝑗<𝑛

]. 
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0 =
𝜕

𝜕ζi,j,s
(𝜏,𝜏)

Ψ

= 𝐸 [𝑋𝑗,𝑠
(τ)(𝑋𝑖,𝑡+1

(τ)
− ζi,0

(𝜏)

−∑ ∑ (ζi,j′,s′
(𝜏,𝜏)    𝑋𝑗′,𝑠′

(𝜏)  +  ζi,j′,s′
(𝜏,3−𝜏)       𝑋𝑗′,𝑠′

(3−𝜏)))

s′∈T(j′)
1<𝑗′<𝑛

]. 

0 =
𝜕

𝜕ζi,j,s
(𝜏,3−𝜏)

Ψ

= 𝐸 [𝑋𝑗,𝑠
(3−τ)(𝑋𝑖,𝑡+1

(τ)
− ζi,0

(𝜏)

−∑ ∑ (ζi,j′,s′
(𝜏,𝜏)    𝑋𝑗′,𝑠′

(𝜏)  +  ζi,j′,s′
(𝜏,3−𝜏)       𝑋𝑗′,𝑠′

(3−𝜏)))

s′∈T(j′)
1<𝑗′<𝑛

]. 

 

It follows that ζ
i,0

(𝜏) =  𝑀(𝜏) −

∑ ∑ (ζ
i,j′,s′

(𝜏,𝜏)𝑀(𝜏)  +s′∈T(j′)1<𝑗′<𝑛

 ζ
i,j′,s′

(𝜏,3−𝜏)𝑀(3−𝜏)) . Replacing ζ
i,0

(𝜏) in (22) 

it turns out that we can pass to centralized 

moments. 

The last two lines in (22) are now equal to: 

 

0 = 𝛿𝑖,𝑗𝐵
(𝜏) −∑ ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′

(𝜏,𝜏) (𝐵(𝜏) + 𝛿𝑠,𝑠′𝐴
(𝜏)) + ζ

i,j′,s′
(𝜏,3−𝜏)(𝐿 + 𝛿𝑠,𝑠′𝐾))

s′∈T(j′)
1<𝑗′≤n

 

 

0 = 𝛿𝑖,𝑗𝐵
(𝜏) − ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′

(𝜏,𝜏) (𝐵(𝜏) + 𝛿𝑠,𝑠′𝐴
(𝜏)) + ζ

i,j′,s′
(𝜏,3−𝜏)(𝐿 + 𝛿𝑠,𝑠′𝐾))s′∈T(j′)  (17) 

 

 

 

0 = 𝛿𝑖,𝑗𝐿 − ∑ ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′
(𝜏,𝜏) (𝐿 + 𝛿𝑠,𝑠′𝐾) + ζi,j′,s′

(𝜏,3−𝜏)(𝐵(3−𝜏) +s′∈T(j′)1<j′≤n

𝛿𝑠,𝑠′𝐴
(3−𝜏))). 

 

0 = 𝛿𝑖,𝑗𝐿 − ∑ (ζ
i,j′,s′

(𝜏,𝜏) (𝐿 + 𝛿𝑠,𝑠′𝐾) + ζi,j′,s′
(𝜏,3−𝜏)(𝐵(3−𝜏) + 𝛿𝑠,𝑠′𝐴

(3−𝜏)))

s′∈T(j′)

 

 

Setting  ζ
i,j′
(𝜏,3−𝜏) = ∑ ζ

i,j′,s′
(𝜏,3−𝜏)

s′∈T(j′) τ =1, 2,the summation over s ∈ T(j) yields  

 

𝛿𝑖,𝑗  𝑡𝑗𝐵
(𝜏) = ζ

i,j

(𝜏,𝜏)( 𝑡𝑗𝐵
(𝜏) + 𝐴(𝜏)) + ζ

i,j

(𝜏,3−𝜏) ( 𝑡𝑗𝐿 + 𝐾) 

𝛿𝑖,𝑗 𝑡𝑗𝐿 = ζ
i,j

(𝜏,𝜏)( 𝑡𝑗𝐿 + 𝐾) + ζ
i,j

(𝜏,3−𝜏) ( 𝑡𝑗𝐵
(3−𝜏) + 𝐴(3−𝜏)) 

 

 

By (14) the determinant of the linear system (28) is positive such that 0 = ζ
i,j

(𝜏,𝜏) =
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ζ
i,j

(𝜏,3−𝜏)
for i ≠ j and ζ

i

(𝜏,𝜏): = ζ
i,i

(𝜏,𝜏)
and ζ

i

(𝜏,3−𝜏): = ζ
i,i

(𝜏,3−𝜏)
 as given in (19). Knowing 

ζ
i,j

(𝜏,𝜏)
and ζ

i,j

(𝜏,3−𝜏)
, (26) gives in addition 

(𝛿𝑖,𝑗 − ζ
i,j

(𝜏,𝜏))𝐵(𝜏) − ζ
i,j

(𝜏,3−𝜏)𝐿 = ζ
i,j,s

(𝜏,𝜏)𝐴(𝜏) + ζ
i,j,s

(𝜏,3−𝜏)K 

(𝛿𝑖,𝑗 − ζ
i,j

(𝜏,𝜏)) 𝐿 − ζ
i,j

(𝜏,3−𝜏)𝐵(3−𝜏) = ζ
i,j,s

(𝜏,𝜏)𝐾 + ζ
i,j,s

(𝜏,3−𝜏)𝐴(3−𝜏) 

 

And since the determinant D2 of this system is positive by (15), the unique solution must be 

ζ
i,j,s

(𝜏,𝜏) =
ζi,j
(𝜏,𝜏)

tj
 and ζ

i,j,s

(𝜏,3−𝜏) =
ζi,j
(𝜏,3−𝜏)

tj
. ∎ 

 

Since in applications the parameters 

appearing in Theorem 3.2 are unknown, the 

following standard moment estimators are 

generally used. 

 

Theorem4.2  

(i). For the parameters M , A , K, and L, (τ 

=1, 2), the following respective estimators 

are unbiased:

  

�̂�(𝜏) ≔
1

𝑡0
∑ ∑ 𝑋𝑖,𝑠

(𝜏)
s∈T(i)1<i≤n , 

 

�̂�(𝜏) ≔
1

𝑡0 − 𝑛
∑ ∑ (𝑋𝑖,𝑠

(𝜏) − 𝑋𝑖
(𝜏)̅̅ ̅̅ ̅̅
)
2

s∈T(i)
1<i≤n

, 

 

                       �̂� ≔
1

𝑡0 − 𝑛
∑ ∑ (𝑋𝑖,𝑠

(1) − 𝑋𝑖
(1)̅̅ ̅̅ ̅̅
) (𝑋𝑖,𝑠

(2) − 𝑋𝑖
(2)̅̅ ̅̅ ̅̅
)

s∈T(i)
1<i≤n

, 

 

�̂� ≔
1

𝑛 − 1
[∑ (𝑋𝑖

(1) − 𝑋(1)̅̅ ̅̅ ̅)(𝑋𝑖
(2) − 𝑋(2)̅̅ ̅̅ ̅) −

𝐾

𝑛1≤i≤n
∑

1

𝑡𝑖1≤i≤n
]. 

 

where 𝑋𝑖
(𝜏)̅̅ ̅̅ ̅̅
: = 1 𝑡𝑖⁄

∑ 𝑋𝑖,𝑠
(𝜏)

s∈T(i)  and 𝑋(𝜏)̅̅ ̅̅ ̅: = 1 𝑛⁄ ∑ 𝑋𝑖
(𝜏)̅̅ ̅̅ ̅̅
.1≤i≤n  

 

 (ii). For the parameters B(τ), (τ =1, 2), only 

the positive part operator[·]+ prevents the 

following estimators from being unbiased: 

�̂�(𝜏) ≔
1

𝑛 − 1
[∑ (𝑋𝑖

(𝜏)̅̅ ̅̅ ̅̅
− 𝑋(𝜏)̅̅ ̅̅ ̅)

2

−
�̂�(𝜏)

𝑛1≤i≤n
∑

1

𝑡𝑖1≤i≤n
]

+

. (18) 

 

Proof.:  

Let (τ =1, 2). Obviously, the linear estimator 

�̂�(𝜏) is unbiased. 

That the estimator �̂�(𝜏) is not biased follows 

from the fact that 

𝐸 [ ∑ (𝑋𝑖,𝑠
(𝜏) − 𝑋𝑖

(𝜏)̅̅ ̅̅ ̅̅
)
2

s∈T(i)

] = (𝑡𝑖 − 1)�̂�
(𝜏). 

Similarly,  𝐸 [∑ (𝑋𝑖,𝑠
(1) −s∈T(i)

𝑋𝑖
(1)̅̅ ̅̅ ̅̅
) (𝑋𝑖,𝑠

(2) − 𝑋𝑖
(2)̅̅ ̅̅ ̅̅
)] = (𝑡𝑖 − 1)𝐾 shows 

that  �̂� is a no biased estimator. Next   

∑ 𝐸 [(𝑋𝑖
(1)̅̅ ̅̅ ̅̅
− 𝑋(1)̅̅ ̅̅ ̅) (𝑋𝑖

(2)̅̅ ̅̅ ̅̅
− 𝑋(2)̅̅ ̅̅ ̅)] =𝑖

𝑛−1

𝑛
∑

1

𝑡𝑖
2𝑖 ∑ 𝐶𝑜𝑣(𝑋𝑖,𝑠

(1), 𝑋𝑖,𝑠
(2)) =𝑠,𝑠′∈T(i)

(𝑛 − 1)[𝐿 +
𝐾

𝑛
∑ 1/𝑡𝑖𝑖 ] shows that also the 

estimator 𝐿 ̂ is unbiased.  

Finally, 
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𝐸 [∑ (𝑋𝑖
(𝜏)̅̅ ̅̅ ̅̅
− 𝑋(𝜏)̅̅ ̅̅ ̅)

2

𝑖
]

=
𝑛 − 1

𝑛
∑

1

𝑡𝑖
2

𝑖
∑ 𝐶𝑜𝑣(𝑋𝑖,𝑠

(𝜏), 𝑋𝑖,𝑠
(𝜏))

𝑠,𝑠′∈T(i)

= (𝑛 − 1)[𝐵(𝜏) +
𝐴(𝜏)

𝑛
∑ 1/𝑡𝑖

𝑖
]. 

Gives the result in (ii).  

 

5 The Bivariate Bühlmann-Straub model 

This section provides a generalization of 

precedent section. The ideas are the same, 

when we look attentively at the assumptions 

of the previous model, we note that the 

hypothesis: 

 

𝑉𝑎𝑟[𝑋(1)𝑖,𝑠|Θi] ≔  𝛼
(1)(Θi)             and                 

𝑉𝑎𝑟[𝑋(2)𝑖,𝑠|Θi] ≔  𝛼
(2)(Θi) 

 

We know that these conditional variances are 

descending with the exposure risk i. For this, 

the Bühlmann-Straub model generalizes the 

Bühlmann model by introduction of weight. 

We consider in this article an homogeneous 

insurance portfolio consisting of n≥2 

contracts. Each contract i has been activated 

in the last t periods at least for one period. By 

T(i)⊆{1,…,t} we denote the set of the 

activated past periods of contract i, assuming 

that its cardinality ti:=|T(i)|≥2. We set 

t₀:=∑1≤i≤n ti. In order to be able to include the 

future period t+1, we set T⁺(i):=T(i)∪{t+1}. 

So, we consider same data of past model and 

we introduce the weights: 𝜑(𝜏)
𝑖,𝑠
 for 𝑋(𝜏)𝑖,𝑠for 

all s∈T⁺(i), i=1,…,n. Now we have for each 

contract i the set of pairs of random variables:   

(𝑋𝑖
1 , 𝑋𝑖

2 ) = (𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 )
𝑠∈𝑇+(i)

, 

 

i =1,...,n. For example, 𝑋𝑖,𝑠
1 𝑎𝑛𝑑 𝑋𝑖,𝑠

2   can be 

interpreted as respectively the amount and the 

number of claims of the contract i in the period 

s. 

The random variables of the whole model are 

denoted by : 

(𝑋1 , 𝑋2 ) = (𝑋𝑖
1 , 𝑋𝑖

2 )
𝑖=1,…,𝑛

, 

We make the following model assumptions: 

(BS1) The random structure variables 

(Θi)i=1,...,n have the identical distribution ℙ Θ. 

(BS2) The families of random variables 

(Θi, 𝑋𝑖
1 , 𝑋𝑖

2)i=1,…,n, are mutually non-

correlated with  

𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2∈ L2 for all s ∈ T+(i), i =1,...,n. The 

complete set of random variables  

{𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 i,s | s ∈ T+(i),i =1,...,n} is assumed 

to be ℙ -irreducible. 

(BS3) For fixed i and conditioned by Θi, the 

pairs of random variables {𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 i,s | s ∈ 

T+(i),i =1,...,n} are mutually non-correlated 

with the first and second conditional moments 

depending only on Θi [5] 

τ =1, 2. Moreover, on a non-negligible set the 

pair (𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2)is assumed to be ℙ(·|Θi)-

irreducible: 

ℙ Θ 

{𝜔|𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 is ℙ(. |Θi(ω)) − irreducible} >

0.                        (19) 

For non-conditional moments (conditional 

variances and structure parameters) we use 

the same notation. 

    A first result from the assumptions made is 

the following [6]: 

 

Proposition 5.1 

Under the model assumptions (BS1) - (BS3) 

we have ∀i: 

  

𝐷𝑖,1: = (
𝐵(1)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴

(1)⊗∆(1)i 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1) 𝐵(2)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(2)⊗∆(2)i

) Is invertible matrix, (20) 

𝐷2 ≔ 
𝐴(1)

𝜑(1)𝑖,𝑠

𝐴(2)

𝜑(2)𝑖,𝑠
− 𝐾2 > 0  ∀𝑠                                                                          (21) 

 

where 𝐸𝑡𝑖×𝑡𝑖 is matrix 𝑡𝑖 × 𝑡𝑖 where all components equal to 1, and ∆(τ)i: = diag(1/
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(𝜑(𝜏)
𝑖,𝑠
)) is a diagonal matrix, τ= 1,2 and 

s=1,..,ti. 

 

Proof 

To show (20), we know by assumption 

(BS1) that the sequence of random variables 

𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 is ℙ(. |Θi(ω)) − irreducible, and 

so is the pair vector 

(∑ 𝑋𝑖,𝑠
1 ,𝑠∈𝑇(𝑖) ∑ 𝑋𝑖,𝑠

2
𝑠∈𝑇(𝑖) ). Proposition 2 

tells us that their covariance matrix is 

positive definite which is the statement in 

(20): 

𝐶𝑜𝑣 ( ∑ 𝑋𝑖,𝑠
1 ,

𝑠∈𝑇(𝑖)

∑ 𝑋𝑖,𝑠
2

𝑠∈𝑇(𝑖)
) = (

𝐵(1)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(1)⊗∆(1)i 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 +𝐾 ⊗ diag(1,… ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 +𝐾 ⊗ diag(1,… ,1) 𝐵(2)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(2)⊗∆(2)i

). 

 

For the inequality (21), the assumption (BS3) 

implies with Proposition that on a set of 

positive ℙΘ measure the covariance matrix 

with respect to the conditional probability 

ℙ(. |Θi(ω))of the pair 𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2 is positive 

definite:

    

 

𝐶𝑜𝑣ℙ(·|𝛩𝑖)(𝑋𝑖,𝑠
1 , 𝑋𝑖,𝑠

2) =

(

 
 

𝛼(1)(𝛩𝑖)

𝜑(1)
𝑖,𝑠

𝜅(𝛩𝑖)

𝜅(𝛩𝑖)
𝛼(2)(𝛩𝑖)

𝜑(2)
𝑖,𝑠 )

 
 
. 

 

This implies that for any pair (𝛼1, 𝛼1) ≠ 0 the 

conditional variance   𝑉𝑎𝑟ℙ(·|𝛩𝑖)(𝛼1𝑋𝑖,𝑠
1 +

𝛼2𝑋𝑖,𝑠
2) ≥ 0   is strictly positive on a set of 

positive ℙΘ measure. Therefore also

 

𝐸𝛩 [𝑉𝑎𝑟ℙ(·|𝛩𝑖)(𝛼1𝑋𝑖,𝑠
1 + 𝛼2𝑋𝑖,𝑠

2)] = (𝛼1   𝛼1)

(

 
 

𝐴(1)

𝜑(1)
𝑖,𝑠

𝐾

𝐾
𝐴(2)

𝜑(2)
𝑖,𝑠)

 
 
(
𝛼1
𝛼2
) > 0 

   

 With real coefficients  ζ
i
(𝜏) = (ζi,0

(𝜏), ζi,j,s 
(𝜏,𝜏), ζi,j,s 

(𝜏,3−𝜏)). 

 

Theorem5.1.       

Under the assumptions (BS1) -- (BS3) the 

optimal solution to the linear credibility 

problem is: 

 µ̂(𝜏)∗
𝑖
 (X1i , X

2
i )

= (1 − ζi
(𝜏,𝜏))𝑀(𝜏)  +

1

ti
 ∑ (ζi 

(𝜏,𝜏)    𝑋𝑖,𝑠
(𝜏)  +  ζi

(𝜏,3−𝜏)(       𝑋𝑖,𝑠
(3−𝜏) −𝑀(3−𝜏)))

s∈T(i)
 

τ =1, 2, where the credibility coefficients  ζi 
(𝜏,𝜏), ζi

(𝜏,3−𝜏)
  are given by the following 

formulas:  

 

(
ζi 
(𝜏,𝜏)

ζi
(𝜏,3−𝜏)

) = (
𝐵(𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴

(𝜏)⊗∆(τ)i 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1) 𝐵(3−𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(3−𝜏)⊗∆(3−τ)i

) . (𝐵
(𝜏)⊗ I
𝐿 ⊗ I

)

 

This shows that the matrix (

𝐴(1)

𝜑(1)𝑖,𝑠
𝐾

𝐾
𝐴(2)

𝜑(2)𝑖,𝑠

) is 

positive definite and consequently its 

determinant 𝐷2 ≔ 
𝐴(1)

𝜑(1)𝑖,𝑠

𝐴(2)

𝜑(2)𝑖,𝑠
− 𝐾2is strictly 

positive.∎ 
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We want to find a linear credibility estimator 

of the bivariate system (𝑋𝑖,𝑡+1
1 , 𝑋𝑖,𝑡+1

2). 
Consequently, it is assumed that such 

estimators of  𝑋𝑖,𝑡+1
(𝜏), τ =1, 2, have the form 

 µ̂(𝜏)
𝑖
 (X1 , X2 ) =  ζi,0

(𝜏)  +

∑ ∑ (ζi,j,s 
(𝜏,𝜏)    𝑋𝑗,𝑠

(𝜏)  +s∈T(j)1<𝑗<𝑛

 ζi,j,s 
(𝜏,3−𝜏)       𝑋𝑗,𝑠

(3−𝜏))  (16)  

 

Where I is a vector (ti × 1) with all composites 

equal to 1. 

Remark 5.1.  

In contrast to the standard credibility formula, 

here the credibility factors are not necessarily 

in[0, 1]. 

 

Proof.: 

Obviously, the credibility problem 

𝑚𝑖𝑛
ζi 
(1),ζi 

(2)𝐸 [ ∑ (𝑋𝑖,𝑡+1
(τ) −  µ̂(𝜏)

𝑖
 (X1, X2 ))

2

τ =1,2

]

= ∑ 𝑚𝑖𝑛
ζi 
(𝜏)   𝐸[(𝑋𝑖,𝑡+1

(τ) −  µ̂(𝜏)
𝑖
 (X1, X2 ))

2

]

τ =1,2

. 

Can be separated. As necessary conditions of optimality, we have for i,j ≤ n and s ∈ T(j):. 

0 =
𝜕

𝜕ζi,0
(𝜏)
= 𝐸 [𝑋𝑖,𝑡+1

(τ) − ζi,0
(𝜏)

−∑ ∑ (ζi,j,s 
(𝜏,𝜏)    𝑋𝑗,𝑠

(𝜏)  +  ζi,j,s 
(𝜏,3−𝜏)       𝑋𝑗,𝑠

(3−𝜏))

s∈T(j)
1<𝑗<𝑛

]. 

0 =
𝜕

𝜕ζi,j,s
(𝜏,𝜏)

Ψ

= 𝐸 [𝑋𝑗,𝑠
(τ)(𝑋𝑖,𝑡+1

(τ)
− ζi,0

(𝜏)

−∑ ∑ (ζi,j′,s′
(𝜏,𝜏)    𝑋𝑗′,𝑠′

(𝜏)  +  ζi,j′,s′
(𝜏,3−𝜏)       𝑋𝑗′,𝑠′

(3−𝜏)))

s′∈T(j′)
1<𝑗′<𝑛

]. 

0 =
𝜕

𝜕ζi,j,s
(𝜏,3−𝜏)

Ψ

= 𝐸 [𝑋𝑗,𝑠
(3−τ)(𝑋𝑖,𝑡+1

(τ)
− ζi,0

(𝜏)

−∑ ∑ (ζi,j′,s′
(𝜏,𝜏)    𝑋𝑗′,𝑠′

(𝜏)  +  ζi,j′,s′
(𝜏,3−𝜏)       𝑋𝑗′,𝑠′

(3−𝜏)))

s′∈T(j′)
1<𝑗′<𝑛

]. 

 

It follows that ζi,0
(𝜏) = 𝑀(𝜏) − ∑ ∑ (ζi,j′,s′

(𝜏,𝜏)𝑀(𝜏)  +  ζi,j′,s′
(𝜏,3−𝜏)𝑀(3−𝜏))s′∈T(j′)1<𝑗′<𝑛  . 

Replacing ζi,0
(𝜏) in (22) it turns out that we 

can pass to centralized moments. 

The last two lines in (22) are now equal to: 
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0 = 𝛿𝑖,𝑗𝐵
(𝜏) −∑ ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′

(𝜏,𝜏)  (𝐵(𝜏) + 𝛿𝑠,𝑠′
𝐴(𝜏)

𝜑(𝜏)
𝑖,𝑠

)

s′∈T(j′)
1<𝑗′≤n

+ ζi,j′,s′
(𝜏,3−𝜏)(𝐿 + 𝛿𝑠,𝑠′𝐾)) 

 

0 = 𝛿𝑖,𝑗𝐵
(𝜏) − ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′

(𝜏,𝜏)  (𝐵(𝜏) + 𝛿𝑠,𝑠′
𝐴(𝜏)

𝜑(𝜏)𝑖,𝑠
) + ζi,j′,s′

(𝜏,3−𝜏)(𝐿 + 𝛿𝑠,𝑠′𝐾))s′∈T(j′) , 

0 = 𝛿𝑖,𝑗𝐿 −∑ ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′
(𝜏,𝜏) (𝐿 + 𝛿𝑠,𝑠′𝐾)

s′∈T(j′)
1<j′≤n

+ ζi,j′,s′
(𝜏,3−𝜏) (𝐵(3−𝜏) + 𝛿𝑠,𝑠′

𝐴(3−𝜏)

𝜑(3−𝜏)
𝑖,𝑠

)) 

 

∑ ∑ 𝛿𝑗,𝑗′ (ζi,j′,s′
(𝜏,𝜏) (𝐿 + 𝛿𝑠,𝑠′𝐾) + ζi,j′,s′

(𝜏,3−𝜏) (𝐵(3−𝜏) + 𝛿𝑠,𝑠′
𝐴(3−𝜏)

𝜑(3−𝜏)𝑖,𝑠
))s′∈T(j′)1<j′≤n . 

 

0 = 𝛿𝑖,𝑗𝐿 − ∑ (ζi,j′,s′
(𝜏,𝜏) (𝐿 + 𝛿𝑠,𝑠′𝐾) + ζi,j′,s′

(𝜏,3−𝜏) (𝐵(3−𝜏) + 𝛿𝑠,𝑠′
𝐴(3−𝜏)

𝜑(3−𝜏)
𝑖,𝑠

))

s′∈T(j′)

 

 

Setting  ζi,j′
(𝜏,3−𝜏) = ∑ ζi,j′,s′

(𝜏,3−𝜏)
s′∈T(j′) τ =1, 2,the summation over s ∈ T(j) yields  

 

𝛿𝑖,𝑗 𝑡𝑗𝐵
(𝜏) = ζi,j

(𝜏,𝜏) ( 𝑡𝑗𝐵
(𝜏) +

𝐴(𝜏)

𝜑(𝜏)
𝑖,𝑠

) + ζi,j
(𝜏,3−𝜏) ( 𝑡𝑗𝐿 + 𝐾) 

𝛿𝑖,𝑗 𝑡𝑗𝐿 = ζi,j
(𝜏,𝜏)( 𝑡𝑗𝐿 + 𝐾) + ζi,j

(𝜏,3−𝜏)  ( 𝑡𝑗𝐵
(3−𝜏) +

𝐴(3−𝜏)

𝜑(3−𝜏)
𝑖,𝑠

) 

By (14) the determinant of the linear system 

is positive such that 0 = ζi,j
(𝜏,𝜏) = ζi,j

(𝜏,3−𝜏)for i 

≠ j and 

Hence we obtain the linear system[6] 

(

 
 

∑  

𝑠∈𝑇(𝑖)

ζi 
(𝜏,𝜏)

∑  

𝑠∈𝑇(𝑖)

ζi
(𝜏,3−𝜏)

)

 
 
=

1

Ξ(𝜏)i
(

𝑡𝑖𝐵
(𝜏)(𝑡𝑖𝐵

(𝜏) + 𝐴(𝜏)) − 𝑡𝑖𝐿(𝑡𝑖𝐿 + 𝐾)

−𝑡𝑖𝐵
(𝜏)(𝑡𝑖𝐿 + 𝐾) + 𝑡𝑖𝐿(𝑡𝑖𝐵

(3−𝜏) + 𝐴(3−𝜏))
)

−1

 

(𝐵
(𝜏)⊗ I
𝐿 ⊗ I

) = (
𝐵(𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴

(𝜏)⊗∆(τ)i 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1, … ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1, … ,1) 𝐵(3−𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(3−𝜏)⊗ ∆(3−τ)i

) .(
ζ
i 
(𝜏,𝜏)

ζ
i
(𝜏,3−𝜏)

)

 

So,  

(
ζi 
(𝜏,𝜏)

ζi
(𝜏,3−𝜏)

) = (
𝐵(𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴

(𝜏)⊗∆(τ)i 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾 ⊗ diag(1, … ,1) 𝐵(3−𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(3−𝜏)⊗∆(3−τ)i

)

−1

. (𝐵
(𝜏)⊗ I
𝐿 ⊗ I

)    (23)

 
Remark5.2 

To return from bivariate Bühlmann-Straub 

credibility estimators to bivariate Bühlmann 

credibility estimators, we put 𝜑(𝜏)
𝑖,1
=
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𝜑(𝜏)
𝑖,2
= ⋯ = 𝜑(3−𝜏)

𝑖,1
= 𝜑(3−𝜏)

𝑖,2
=. . = 1 we have the Covariance matrix equal to: 

where Ξ(𝜏)i ≔ (𝑡𝑖𝐵
(𝜏) + 𝐴(𝜏))(𝑡𝑖𝐵

(3−𝜏) + 𝐴(3−𝜏)) − (𝑡𝑖𝐿 + 𝐾)
2 

 

𝐶𝑜𝑣(∑ 𝑋𝑖,𝑠
1 ,𝑠∈𝑇(𝑖) ∑ 𝑋𝑖,𝑠

2
𝑠∈𝑇(𝑖) ) =

(
𝐵(1)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴

(1)⊗∆(1)i 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 +𝐾 ⊗ diag(1,… ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1) 𝐵(2)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(2)⊗∆(2)i

)So, the system (23) 

becomes: 

 

 

(
ζi 
(𝜏,𝜏)

ζi
(𝜏,3−𝜏)

) = (
𝐵(𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴

(𝜏)⊗diag(1,… ,1) 𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1)

𝐿 ⊗ 𝐸𝑡𝑖×𝑡𝑖 + 𝐾⊗ diag(1,… ,1) 𝐵(3−𝜏)⊗𝐸𝑡𝑖×𝑡𝑖 + 𝐴
(3−𝜏)⊗diag(1,… ,1)

)

−1

. (
𝐵
(𝜏)
⊗I

𝐿⊗I
) 

 

When applying the sum of s, We have  

(

 
 

∑  

𝑠∈𝑇(𝑖)

ζi 
(𝜏,𝜏)

∑  

𝑠∈𝑇(𝑖)

ζi

(𝜏,3−𝜏)

)

 
 
= (

𝑡𝑖𝐵
(𝜏) + 𝐴(𝜏) 𝑡𝑖𝐿 + 𝐾

𝑡𝑖𝐿 + 𝐾 𝑡𝑖𝐵
(3−𝜏) + 𝐴(3−𝜏)

)

−1

. (
𝑡𝑖𝐵

(𝜏)

𝑡𝑖𝐿
) 

or,  
. 

Now,  the system can be rewritten as : (𝐴
(𝜏) 𝐾
𝐾 𝐴(3−𝜏)

) . (
ζi,s′ 

(𝜏,𝜏)

ζi,s′ 
(𝜏,3−𝜏)

) =

(
(1 − ζi 

(𝜏))𝐵(𝜏) − ζi 
(3−𝜏)L

(1 − ζi 
(𝜏))L − ζi 

(3−𝜏)𝐵(𝜏)
), 

 

(
ζi,s′ 

(𝜏,𝜏)

ζi,s′ 
(𝜏,3−𝜏)

) = (𝐴
(𝜏) 𝐾
𝐾 𝐴(3−𝜏)

)
−1

. (
(1 − ζi 

(𝜏))𝐵(𝜏) − ζi 
(3−𝜏)L

(1 − ζi 
(𝜏))L − ζi 

(3−𝜏)𝐵(𝜏)
) 

(
ζi,s′ 

(𝜏,𝜏)

ζi,s′ 
(𝜏,3−𝜏)

) =
1

𝐴(𝜏)𝐴(3−𝜏) − 𝐾2
(𝐴

(3−𝜏) −𝐾
−𝐾 𝐴(𝜏)

)
−1

. (
(1 − ζi 

(𝜏))𝐵(𝜏) − ζi 
(3−𝜏)L

(1 − ζi 
(𝜏))L − ζi 

(3−𝜏)𝐵(𝜏)
) 

 

Finally, we have the bivariate credibility estimators of Bühlmann: 

(
ζi,s′ 

(𝜏,𝜏)

ζi,s′ 
(𝜏,3−𝜏)

) =

(

 
 

(𝑡𝑖𝐵
(𝜏) + 𝐴(𝜏))𝐵(𝜏) − L(𝑡𝑖𝐿 + 𝐾)

Ξ(𝜏)i
−𝐵(𝜏)(𝑡𝑖𝐿 + 𝐾) + 𝐿(𝑡𝑖𝐵

(3−𝜏) + 𝐴(3−𝜏))

Ξ(𝜏)i )

 
 
. 

 

 

Theorem5.2.  

(i). For the parameters: M , A , K, and L, (τ 

=1, 2), the following respective estimators 

are unbiased[10],[9]: 

�̂�(𝜏) ≔
1

𝑡0
∑ ∑ 𝑋𝑖,𝑠

(𝜏)
s∈T(i)1<i≤n , 

 

�̂�(𝜏) ≔
1

𝑡0 − 𝑛
∑ ∑ 𝜑(𝜏)

𝑖,𝑠
(𝑋𝑖,𝑠

(𝜏) − 𝑋𝑖,𝜑
(𝜏))

2

s∈T(i)
1<i≤n

, 
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                       �̂� ≔
1

𝑐1
∑ ∑ (𝑋𝑖,𝑠

(𝜏) − 𝑋𝑖,𝜑
(𝜏))(𝑋𝑖,𝑠

(3−𝜏) − 𝑋𝑖,𝜑
(3−𝜏))

s∈T(i)
1<i≤n

, 

 

 

�̂� ≔
1

𝑛 − 2 + 𝑛∑
φ(τ)i,.φ

(3−τ)
i,.

φ(τ).,.φ
(3−τ)

.,.
1<i≤n

[∑ (𝑋𝑖,𝜑
(𝜏) − 𝑋𝜑,𝜑

(𝜏))(𝑋𝑖,𝜑
(3−𝜏) − 𝑋𝜑,𝜑

(3−𝜏))
1≤i≤n

− 𝐾. (𝑐3]. 
 

 (ii). For the parameters B(τ), (τ =1, 2), only 

the positive part operator [·]+ prevents the 

following estimators from being unbiased:  

�̂�(𝜏) ≔ 𝑐2[
𝑛

𝑛 − 1
∑

φ(τ)
i,.

φ(τ)
.,.

(𝑋𝑖,𝜑
(𝜏) − 𝑋𝜑,𝜑

(𝜏))
2
− 𝑛

�̂�(𝜏)

φ(τ)
.,.1≤i≤n
]+ 

 

where φ(τ)
i,.
: = ∑ φ(τ)

i,s𝑠  

φ(τ)
.,.
: = ∑ φ(τ)

i,.𝑖    

𝑋𝑖,𝜑
(𝜏): = ∑

φ(τ)
i,s

φ(τ)
i,.𝑠
𝑋𝑖,𝑠

(𝜏) 

𝑋𝜑,𝜑
(𝜏): = ∑

φ(τ)
i,.

φ(τ)
.,.𝑠
𝑋𝑖,𝑠

(𝜏) 

𝑐1 ≔ 𝑡0 − 2𝑛 −∑ ti
φ(τ)

i,s
φ(3−τ)

i,s

φ(τ)
i,.
φ(3−τ)

i,.i,s
 

𝑐3 ≔∑ φ(τ)
i,s
φ(3−τ)

i,s
(

1

φ(τ)
i,.
φ(3−τ)

i,.

−
1

φ(τ)
i,.
φ(3−τ)

.,.

−
1

φ(τ)
.,.
φ(3−τ)

i,.

+
n

φ(τ)
.,.
φ(3−τ)

.,.

)
i,s

 

 

And 𝑐2 ≔
𝑛−1

𝑛
(∑

φ(τ)i,.

φ(τ).,.
(1 −

φ(τ)i,.

φ(τ).,.
i  ))−1. 

Proof. : 

Let(τ =1, 2). Obviously, the linear estimator 

�̂�(𝜏) is unbiased. That the estimator �̂�(𝜏)is 

not biased follows from the fact that 

𝐸 [∑ φ(τ)
i,s
(𝑋𝑖,𝑠

(𝜏) − 𝑋𝑖,𝜑
(𝜏))

2

𝑖,𝑠
] = (𝑡0 − 𝑛)�̂�

(𝜏). 

 

Similarly, 𝐸[∑ (𝑋𝑖,𝑠
(𝜏) −𝑖,𝑠

𝑋𝑖,𝜑
(𝜏))(𝑋𝑖,𝑠

(3−𝜏) − 𝑋𝑖,𝜑
(3−𝜏))] = 𝑐1𝐾. 

Shows that  �̂� is a non-biased estimator. 

Next,   

∑ 𝐸[(𝑋𝑖,𝜑
(𝜏) − 𝑋𝜑,𝜑

(𝜏))(𝑋𝑖,𝜑
(3−𝜏) − 𝑋𝜑,𝜑

(3−𝜏))]
𝑖

=∑ [𝐿 [1 −
φ(3−τ)

i,.

φ(3−τ)
.,.

−
φ(τ)

i,.

φ(τ)
.,.

+∑
φ(3−τ)

i,.
φ(τ)

i,.

φ(3−τ)
.,.
φ(τ)

.,.𝑖
]

𝑖

+ 𝐾 [∑
φ(3−τ)

i,s
φ(τ)

i,s

φ(3−τ)
i,.
φ(τ)

i,.𝑠
−∑

φ(3−τ)
i,s
φ(τ)

i,s

φ(3−τ)
.,.
φ(τ)

i,.𝑠
−∑

φ(3−τ)
i,s
φ(τ)

i,s

φ(τ)
.,.
φ(3−τ)

i,.𝑠
+∑

φ(3−τ)
i,s
φ(τ)

i,s

φ(τ)
.,.
φ(3−τ)

.,.𝑖,𝑠
]]. 

 

Shows that also the estimator  �̂� is unbiased. Finally,   
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𝐸 [∑
φ(τ)

i,.

φ(τ)
.,.𝑖
(𝑋𝑖,𝜑

(𝜏) − 𝑋𝜑,𝜑
(𝜏))

2
] = 𝐵(𝜏) (

φ(τ)
.,.

2
− ∑ φ(τ)

i,.

2
i

φ(τ)
.,.

2 )+ (𝑛 − 1)
𝐴(𝜏)

φ(τ)
.,.

 

 

 

We can observe from the table above, that the 

MSE and RMSE of the bivarite Bühlmann 

estimators 𝜇1(𝑧) are consistent smaller than 

classic Bühlmann estimators 𝜇1(𝑧).  In the 

sense mean square error, the estimators of the 

bivarite Bühlmann 𝜇1(𝑧) are consistently 

better than the existing classic Bühlmann 

estimators with X(1). 

Gives the result in (ii).  

 

6 Example 

In this section, we present a numerical 

example to illustrate the bivarite Bühlmann 

credibility estimators given in section 3 and 

compare these estimators with the existing 

results in [1] and [2](classic Bühlmann 

estimator). In this simulation, we assume that 

the claims Xij
2~lognormal(−0.6,1) 𝑎𝑛𝑑 

Xij
1~poisson(lambda = 3) for 𝑖 =

1, … ,100 𝑎𝑛𝑑 𝑗 = 1,… ,6 respectivly. To 

compare the bivariate credibility premiums, 

we simulated six years of experience for 

portfolios of 100 contracts. We calculated the 

bivariate credibility premium using the first 

five years of experience and compared it with 

the actual outcome, Xi6
2 . [8]For each 

simulation,(Monte Carlo) the accuracy of the 

various formulas was measured by the mean 

square error 𝑀𝑆𝐸 =
1

100
∑ (𝜇𝑖6

(𝜏)
−100

𝑖=1

Xi6
(𝜏))

2

, 𝑓𝑜𝑟 𝜏 = 1,2. 

And the relative mean square error: 𝑅𝑀𝑆𝐸 =

1

100
∑ (

𝜇𝑖6
(𝜏)
−Xi6

(𝜏)

𝜇𝑖6
(𝜏) )

2

,100
𝑖=1 𝑓𝑜𝑟 𝜏 = 1,2. 

These errors were then averaged over 5,000 

simulations. We also recorded the number of 

times each formula had the smallest MSE and 

RMSE. 

The calculations were coded in R(R 

Development CoreTeam2005).The functions  

used to simulate the data and compute the 

structure parameters are part of  the R package 

actuar. The table 1 presents the results when 

structure parameters were estimated using the 

estimators of section 

 
Table1. Results of 5000 simulations 

 MSE RMSE 

Classic Bühlmann  

𝜇1(𝑧) 2.980076 1.72629 

𝜇2(𝑧) 0.8180612 0.9044673 

𝜇2/1(𝑧) 
 

0.3269737 0.5718162 

Bivarite Bühlmann  

𝜇1(𝑧) 1.280576 1.131626 

𝜇2(𝑧) 4.231229 2.056995 

𝜇2/1(𝑧) 
 

1.992162 1.41144 

 

7 Simulations 

 

R code 

simulation of  Bühlmann  classic X2 

 Appel package actuar 

nsimul<-5000 

prime<- matrix(0, nrow=100, ncol=nsimul) 

for(i in 1 : nsimul){ X2<-  matrix(c(rlnorm(600,-0.6,1)),ncol=6 ) #matrice de montant de 

sinistre 
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X2<-matrix(X2,nrow=100,ncol=5) 

x<-data.frame(contract=1:100, matrix(X2,nrow=100)) 

fit<-cm(~contract,x) 

prime[,i]<-predict(fit) 

} 

Prime.buhlmann<-matrix(0,nrow=100,ncol=1) 

for(i in 1: 100){ Prime.buhlmann [i,]<-mean(prime[i,])}  

 

data <- data.frame(actual=X2[,6], 

predicted= Prime.buhlmann) 

mean((data$actual - data$predicted)^2) 

 

sqrt(mean((data$actual - data$predicted)^2)) 

 

simulation of classic Bühlmann X2/X1 

 Appel package actuar 

n=100 

nsimul<-5000 

prime<- matrix(0, nrow=100, ncol=nsimul) 

for(i in 1 : nsimul){ X2<-  matrix(c(rlnorm(600,-0.6,1)),ncol=6 ) #matrice de montant de 

sinistre 

X2<-matrix(X2,nrow=100,ncol=5) 

X1<-  matrix(c(rpois(600,lambda=3)),ncol=6 ) #matrice de nombre de sinistre 

 

  X1<-matrix(X1,nrow=100,ncol=5) 

for( i in 1:100){for(j in 1:5){ if( X1[i,j]==0){X1[i,j]<-1}}} 

for( i in 1:100){for(j in 1:6){ if( X1[i,j]==0){X1[i,j]<-1}}} 

 

x<-data.frame(contract=1:100, matrix(X2/X1,nrow=100)) 

fit<-cm(~contract,x) 

prime[,i]<-predict(fit) 

                                                                                                } 

Prime.buhlmann<-matrix(0,nrow=100,ncol=1) 

for(i in 1: 100){ Prime.buhlmann [i,]<-mean(prime[i,])}  

p<-(X2/X1)[,6] 

data <- data.frame(actual=p, 

predicted= Prime.buhlmann) 

mean((data$actual - data$predicted)^2) 

 

sqrt(mean((data$actual - data$predicted)^2)) 

simulation of classic Bühlmann X1 

 Appel package actuar 

nsimul<-5000 

prime<- matrix(0, nrow=100, ncol=nsimul) 

for(i in 1 : nsimul){ X2<-  matrix(c(rlnorm(600,-0.6,1)),ncol=6 ) #matrice de montant de 

sinistre 

X2<-matrix(X2,nrow=100,ncol=5) 

X1<-  matrix(c(rpois(600,lambda=3)),ncol=6 ) #matrice de nombre de sinistre 

 

  X1<-matrix(X1,nrow=100,ncol=5) 
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x<-data.frame(contract=1:100, matrix(X1,nrow=100)) 

fit<-cm(~contract,x) 

prime[,i]<-predict(fit) 

} 

Prime.buhlmann<-matrix(0,nrow=100,ncol=1) 

for(i in 1: 100){ Prime.buhlmann [i,]<-mean(prime[i,])}  

p<- X1[,6] 

data <- data.frame(actual=p, 

predicted= Prime.buhlmann) 

mean((data$actual - data$predicted)^2) 

 

sqrt(mean((data$actual - data$predicted)^2)) 

 

Simulation of bivariate Bühlmann model 

n=100 

Fact.credib11<-1 :n ;  Fact.credib12<-1 :n ;  Fact.credib22<-1 :n ; Fact.credib21<-1 :n ; 

Prime.credib1 <-1:n ; Prime.credib2<- 1:n  ;  C<-rep(1, 6) ; Prime.credib.bivar<- 1:n 

  S<-matrix(1, ncol=5,nrow=100) 

nsimul<-5000  

prime<- matrix(0, nrow=100, ncol=nsimul) 

for(j in 1 : nsimul){ 

X1<-  matrix(c(rpois(600,lambda=3)),ncol=6 ) #matrice de nombre de sinistre 

X2<-  matrix(c(rlnorm(600,-0.6,1)),ncol=6 ) #matrice de montant de sinistre 

X2<-matrix(X2,nrow=100,ncol=5) 

  X1<-matrix(X1,nrow=100,ncol=5) 

for( i in 1:100){for(j in 1:5){ if( X1[i,j]==0){X1[i,j]<-1}}} 

 

   

  X1.<-1:n;  X2.<-1:n;  i<-1:n; E=matrix(1, ncol=5, nrow=n) 

   for(i in 1:n){X1.[i]=(1/sum(S[i,]))*sum(X1[i,])} 

   

   X1..=(1/n)*sum(X1.) 

     

   for(i in 1:n){X2.[i]=(1/ sum(S[i,]))*sum(X2[i,])} 

   

   X2..=(1/n)*sum(X2.) 

   

  a1=(1/(sum(S)-n))*(sum( (X1-(X1.*E))^2)) 

 

      a2=(1/(sum(S)-n))*(sum( (X2-(X2.*E))^2)) 

   

   K=(1/(sum(S)-n))*sum((X1-(X1.*E))*(X2-(X2.*E))) 

   

   

   L=(1/(n-1))*(sum((X1.-X1..)*(X2.-X2..))-(K/n)*(sum(1/sum(S[i,])))) 

   

   

   B1= abs((1/(n-1))*(sum((X1.-X1..)^2)-(a1/n)*(sum(1/sum(S[i,])))));  B2 = abs((1/(n-

1))*(sum((X2.-X2..)^2)-(a2/n)*(sum(1/sum(S[i,]))))) 
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  for(i in 1: n){  (Fact.credib22[i]=(sum(S[i,])/( (sum(S[i,])*B2+a2)*(sum(S[i,])*B1+a1)-

(sum(S[i,])*L+K))*(B2*(sum(S[i,])*B1+a1)-L*(sum(S[i,])*L+K))) )} 

   

   for(i in 1: n){ (Fact.credib21[i]=(sum(S[i,])/( (sum(S[i,])*B2+a2)*(sum(S[i,])*B1+a1)-

(sum(S[i,])*L+K))*(a2*L+B2*K)) ) } 

   

     

  for(i in 1: n){  (Prime.credib2[i]=(1-

Fact.credib22[i])*X2..+(1/sum(S[i,]))*sum(Fact.credib22[i]*X2[i,]+Fact.credib21[i]*(X1[i,]-

X1..*C)))   } 

for(i in 1: n){  (Prime.credib.bivar [i]= Prime.credib2[i]/ Prime.credib1[i])} 

 

prime[,j]<- Prime.credib1 

} 

Prime.buhlmann<-matrix(0,nrow=100,ncol=1) 

for(i in 1: 100){ Prime.buhlmann [i,]<-mean(prime[i,])} 

 

 

p<- X2[,6] 

data <- data.frame(actual=p, 

predicted= Prime.buhlmann) 

mean((data$actual - data$predicted)^2) 

 

sqrt(mean((data$actual - data$predicted)^2)) 
 

 

8 Conclusions 

Insurance and more precisely its branch the 

theory of credibility plays a key role of 

economic stabilizer for households in times of 

crisis, because it allows to smooth the 

consumption of individuals facing shocks, 

whether they are individual or collective in 

nature such as natural disasters or financial 

crises. For example, auto insurance and fire 

insurance are products that perform this 

stabilizing function. Another example, the 

number of catastrophic events and the amount 

of economic losses is varying in different 

world regions. 

So credibility theory is also a stable source of 

finance for financial markets and for the 

economy, because it promotes credit and 

investment in a long-term perspective. The 

paper describes a generalization a univariate 

Bühlmann model, by using additional sources 

of data, where the new credibility is derived.  

In this article, the bivariate credibility model 

is refined by the introduction of the 

irreducible random variables. This concept is 

very important in the calculation of bivariate 

credibility premium which helps us ensure the 

covariance matrix inversion. Thus, the future 

prospects are Quadratic Bivariate Credibility. 
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