
20 Informatica Economică vol. 26, no. 4/2022

Evaluation of Students Through the Commits

Made on the GitHub Code Repositories

Alexandru ALEXANDRU1, Alin ZAMFIROIU2,3

1Military Technical Academy “Ferdinand I”
2Bucharest University of Economic Studies

3National Institute for Research & Development in Informatics - ICI Bucharest

alexandru.alexandru.aa99@gmail.com, alin.zamfiroiu@csie.ase.ro

Evaluation of students in the time of the semester is made in general by homework and some

tasks that the students should resolve them. For a technical course like programming or

development is important to evaluate the perspective of the students that can work in coding.

In this paper, we present an instrument that can help teachers in student assessment by

providing support for work management and automated code evaluation. For programming

subjects, it is very important for the teacher to follow the progress of all students during the

semester. This would mean giving them a lot of homework and correcting them. This is very

time-consuming. The tool proposed by us will make an automatic evaluation of all the commits

made by the students on a GitHub repository, the teacher being able to see the evolution of all

the students much faster.

Keywords: Students, Evaluation, Code, Repositories

DOI: 10.24818/issn14531305/26.4.2022.02

Introduction
The teacher should centralize all student

responses, correct them, and then give the

pupils the results using traditional evaluation

techniques. If a teacher wants to evaluate each

student's development over the course of a

semester or academic year, all of the students'

tests should be collected in one place, and a

sheet with each student's results should be

made. It takes a lot of time and is very

challenging, especially if the teacher has a

large class size. It is manageable for small

student groups, but for large student groups,

the teacher won't be able to administer as

many tests and quizzes.

Based on the student’s responses, the system

may easily and automatically perform these

analyses during the virtual examination. The

teacher would rapidly be aware of each

student's progress in this way [1], [2].

If the results of the prior exam are used as the

basis for the following test, it is crucial. To do

this, the teacher should assess each student's

development and design a unique test for

them.

It will be extremely simple to create that in a

virtual evaluation using the question from the

pool. The method for selecting the questions

for each student based on the prior test, in

order to enhance the student's learning

process, is still a challenge.

In this paper, we propose a way of analyzing

the progress of students from a technical field

by analyzing the code committed to a

repository in GitHub [3].

All students from a technical field university

have to write code and teachers should

evaluate this code for each phase of the project

or for each homework. Also, more and more

teachers start to put students to use different

repositories where they should upload the

code to make it available for teachers and also

for team workers if the project is for a team of

students. In this way, it will be more

convenient for teachers if will exist a tool that

can analyze these repositories from students

automatically and suggest a grade for them. In

this way, the teachers should only check the

correctness of the obtained grade.

In [4] it is presented the way of evaluation of

students by online quizzes, and in this way,

the number of meetings is reduced, by using

the way of evaluation through the code written

and committed to a public repository this

1

Informatica Economică vol. 26, no. 4/2022 21

number of the meetings is reduced to zero. So,

the teachers shouldn’t meet with students.

Each student should send to the teachers the

link to his repository where commits all

changes and the teachers can evaluate the

progress through the platform that analyzes

the code from that repository.

Fig. 1. Evaluation in a traditional way

Figure 1 shows the structure of meetings

between professors and students in the

traditional way of education. The teacher must

meet with the student for the evaluation part

and then for the part of providing the results.

Fig. 2. Evaluation in an online way

Figure 2 shows the online teaching mode, in

which the evaluation of grid tests is done

automatically and thus the teacher meets with

the student only once for the evaluation

because the results are automatically

displayed on the spot.

Fig. 3. Evaluation by analyzing the progress

Figure 3 shows the evaluation mode through

the code repositories. In this way, progress is

made automatically based on the code written

by the student and loaded in that repo, without

the need for a physical meeting with the

teacher.

In this way, it can be observed that by

analyzing the code on GitHub, the evaluation

method of students is improved by reducing

Teacher

Student

Evaluation Results

Teacher

Student

Evaluation Results

Teacher

Student
Evaluation Results

22 Informatica Economică vol. 26, no. 4/2022

the number of meetings between them and the

teacher, the evaluation being carried out

automatically.

According to [5], there are three main aspects

regarding to the learner motivation:

confidence, confusion and effort. These may

be detected to some extent, by learner activity

on different platforms.

2 Material and Methods

In this section, we describe the elements that

we are using in the process of evaluation of

stunts in an atomically way.

We create a prototype platform that will

analyze the code committed in one repository

of code. The platform will analyze the number

of commits, the number of changes, and so on.

This platform is presented in the next section.

We have modified the platform in a way that

it is able to connect to more public repositories

from GitHub and make this evaluation for

more repositories. In this way, we can

evaluate more repositories from more

students.

We have a group of 100 students from

Bucharest University of Economic Studies,

Faculty of Cybernetics, Statistics and

Economic Informatics. They have been

evaluated for a course by the code they write

in the semester period. They have created on

a repository that commits all the code written

in the laboratories and for homework. The

platform will get all these repositories links

and will be made automatically the evaluation

of all students.

For student evaluation, we created a system

that provides a grade based on the extracted

information. We generated a dataset, each

characteristic having values in a predefined

range. The characteristics we tracked are the

number of total commits, the number of

commits per month, the total number of

changes made, the number of changes per

commit, and the number of changes per

month. To calculate the grade, we created a set

of formulas (Equation 1), which can be

configured according to the teacher's

requirements (variables like x, y, z, q etc.).

grade_1 =
10 × 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑜𝑚𝑚𝑖𝑡𝑠

𝑥

grade_2 =
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑜𝑚𝑚𝑖𝑡𝑠_𝑝𝑒𝑟_𝑚𝑜𝑛𝑡ℎ × 𝑦

𝑧 × 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑜𝑚𝑚𝑖𝑡𝑠

grade_3 =
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑞 × 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑜𝑚𝑚𝑖𝑡𝑠

grade_4 =
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐ℎ𝑎𝑛𝑔𝑒𝑠_𝑝𝑒𝑟_𝑐𝑜𝑚𝑚𝑖𝑡 × 𝑙

𝑚

grade_5 =
𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐ℎ𝑎𝑛𝑔𝑒𝑠_𝑝𝑒𝑟_𝑚𝑜𝑛𝑡ℎ × 𝑛

𝑝 × 𝑛𝑢𝑚ă𝑟_𝑚𝑜𝑑𝑖𝑓𝑖𝑐ă𝑟𝑖

final_grade =
∑ 𝑔𝑟𝑎𝑑𝑒_𝑘5

𝑘=1

5

Equation 1. Formulas to calculate grade for a student

3 Code Evolution Visualization Platform
The created platform follows the progress of a

student using 2 methods: the first one provides

an overview of the changes made at each stage

of the project by viewing them in an

interactive way and the second one extracts

certain features that provide information

about the student’s contribution, for example,

their weekly changes [6].

Informatica Economică vol. 26, no. 4/2022 23

Fig. 4. System architecture

Figure 4 shows the architecture of the system,

the application frontend, its communication

with the server, the functionalities that it can

solve at the request of the user and what tools

it uses to provide the desired answer. It shows

how the 2 methods described in the first

paragraph are divided into different modules

each one working on different task to resolve

the request made by user [7], [8].

For the first method we created a transition

using a stack of div, each one having an Editor

type component, with an unique index. In

order to be able to control what is displayed at

a given moment, we used a slider that allows

the selection of a state and specific buttons

(forward, backward, stop and play). Initially

all the div in that stack, except for the first one

which is considered the start page, are not

visible. When the slider is moved to a new

value, all the div in that stack will have display

property none, except for the selected value

that remains with the display property on the

block (that index is always considered, which

is sent via an event handler). For a smooth

transition (like one from a YouTube video) we

used a method that calls a function and runs

some code after specific intervals of time (the

change of display property for a specific div

mentioned above).

The content of each Editor component is

obtained using the nodegit library from npm

package. After entering the GitHub link, the

server downloads repository locally, assign a

unique name to that directory and creates a list

of commits and a list of files present at the last

commit. If a file is selected, using the

previously created lists, the handle event

function will iterate through each index,

checks if that file existed at that time, fetches

the code and adds it to a new list, which will

be sent later as a response to the frontend. In

that way, each Editor component will contain

the file code from a specific commit during

the development of the application.

The implementation of the second method can

be divided into 2 directions: features

extraction for a set of repositories and students

evaluation based on that information. For

feature extraction we used a function that

takes each link from a given list, downloads

the repository and goes through each commit

separately. At the time of browsing certain

properties will be calculated: total number of

commits, number of commits made each

24 Informatica Economică vol. 26, no. 4/2022

month in order to determine frequency

contribution during application development.

To obtain the changes made (lines added,

deleted or modified) for each commit we

calculated the difference between it and the

parent commit. Each diff (the result calculated

before) is split into packets (each packet

representing a file) and these in turn are split

into chunks of code that represent the changes

made between commits for a certain file.

Using these extracted features, we can

calculate other statistics that would be useful,

such as the changes made on each commit or

the changes made each month.

Another functionality that will help to

evaluate students is to detect if there are some

similarities between their repositories. We

created a system that groups repositories

based on featured extracted earlier. To

achieve this for each repository a feature

vector is created. Having this vector we

calculated the Euclidean distance (see

Equation 2, where p and q are 2 points in the

Euclidean space, and 𝑞𝑖 and 𝑝𝑖 are 2 vectors

that represent those points) between each

repository, in order to build a matrix of

distances where the line (1, 2, 3, ... , n)

represents the respective repository and the

column the distance with the others. Based on

the matrix created before, using k-means

algorithm we were able to determine the

labels (the students that have similar time

contributions during the application

development), setting a number of cluster that

we want to obtain.

d(p, q) = √∑(𝑞𝑖 − 𝑝𝑖)
2

𝑛

𝑖=1

Equation 2. Formula for Euclidean distance

4 Results

To see if the solution proposed by these 2

methods is reliable and does not require long

execution times for a repository that has a

large number of files and commits or for a set

of repositories that must be evaluated, we

calculated the response time that the user

receives from the moment the request is

initiated.

Fig. 5. Time to download a repository and parse all the files

The graph (Figure 5) shows the times in which

the platform can parse a repository. We tested

on 5 repositories with different sizes (7, 94,

531, 1230 and 2851 commits, respectively).

Informatica Economică vol. 26, no. 4/2022 25

To this time is added the time for parsing the

source code of a file when it is chosen, but this

operation increases the time by a maximum of

3 seconds (sometimes this time is not even

noticeable).

Figure 6. Features extraction time

In the graph (Figure 6) we calculated

extraction times for 1, 10, 25, 50, 75 and 100

repositories. As can be seen, the time to

extract the features of that set and the final

grade based on them is much higher than if we

did not calculate that grade as well (for 100

repositories the time increased by about 120

seconds). This is due to the time to predict the

grade using the created model. However, the

times that the platform can produce are very

good, as this is used for teaching purposes to

evaluate a group of maximum 20-25 students.

Figure 7. Clustering algorithm time

26 Informatica Economică vol. 26, no. 4/2022

In the Figure 7 are represented the times in

which the platform can perform the clustering

of the repositories based on the extracted

characteristics. We performed this test with 5,

10, 15, 20, 25, 30, 40, 50, 70, 90 and 100

repositories as input to the clustering

algorithm. The number of labels is 4 and the

number of iterations of the algorithm is 12.

5 Conclusion
There are some limitations to our analysis, the

prediction grade and clustering repositories

based on features extracted can be upgraded

for a better evaluation of students. Currently,

k-means algorithm doesn’t provide always a

corect answer and for future work, we will try

to use different algorithms like DBSCAN

(Density-Based Spatial Clustering of

Applications with Noise) or other ones that

can fit perfectly on our dataset. For prediction

grade, we need to create a bigger dataset and

to see what feature we actually need for a

correct grade prediction.

References

[1] Dall, C., & Nieh, J. (2014, March).

Teaching operating systems using code

review. In Proceedings of the 45th ACM

technical symposium on Computer science

education (pp. 549-554).

[2] Cipriano, B. P., Fachada, N., & Alves, P.

(2022). Drop Project: An automatic

assessment tool for programming

assignments. SoftwareX, 18, 101079.

[3] Krusche, S., Berisha, M., & Bruegge, B.

(2016, May). Teaching code review

management using branch based workflows.

In Proceedings of the 38th International

Conference on Software Engineering

Companion (pp. 384-393).

[4] Boncea, R., Zamfiroiu, A., & Mitan, E.

(2018). Proposing algorithm to improve

student evaluation process. In EDULEARN18

Proceedings (pp. 5799-5805). IATED

[5] Qu, L., & Johnson, W. L. (2005,

May). Detecting the learner's

motivational states in an interactive

learning environment. In Proceedings of the

2005 conference on Artificial Intelligence in

Education: Supporting Learning through

Intelligent and Socially Informed

Technology (pp. 547-554). IOS Press

[6] Parizi, R. M., Spoletini, P., & Singh, A.

(2018, October). Measuring team members’

contributions in software engineering projects

using git-driven technology. In 2018 IEEE

Frontiers in Education Conference (FIE) (pp.

1-5). IEEE.

[7] Guerrero-Higueras, Á. M., Matellán-

Olivera, V., Costales, G. E., Fernández-

Llamas, C., Rodriguez-Sedano, F. J., &

Conde, M. Á. (2018). Model for evaluating

student performance through their interaction

with version control systems. Proceedings of

the Learning Analytics Summer Institute

Spain

[8] Wang, S., Jager, L. R., Kammers, K.,

Hadavand, A., & Leek, J. T. (2021). Linking

open-source code commits and MOOC grades

to evaluate massive online open peer

review. arXiv preprint arXiv:2104.12555.

Alexandru ALEXANDRU has graduated the Military Technical Academy

“Ferdinand I”, Faculty of Computer Science in 2022. Currently he started the

Master program Internet System Engineering at Politehnica University of

Bucharest and works in Ministry of National Defence as software developer.

Informatica Economică vol. 26, no. 4/2022 27

Alin ZAMFIROIU has graduated the Faculty of Cybernetics, Statistics and

Economic Informatics in 2009. In 2011 he has graduated the Economic

Informatics Master program organized by the Bucharest University of

Economic Studies and in 2014 he finished his PhD research in Economic

Informatics at the Bucharest University of Economic Studies. Currently he

works like a Senior Researcher at “National Institute for Research &

Development in Informatics, Bucharest”. He has published as author and co-

author of journal articles and scientific presentations at conferences.

